Oscillations of flow past perforated and slotted plates: attenuation via a leading-edge ramp

Oscillations of flow past perforated and slotted plates: attenuation via a leading-edge ramp The present investigation aims to attenuate purely hydrodynamic, long-wavelength, self-excited oscillations of flow past a perforated or slotted plate by deflection of the inflow with a small ramp located at the leading-edge of the plate. Digital particle image velocimetry is complemented by unsteady pressure measurements to determine the underlying physics associated with attenuation of the oscillations. Irrespective of whether a perforated or slotted plate is employed, complete attenuation of the pressure fluctuations associated with the oscillation can be achieved for dimensionless deflection ratios of h/L ≥ 0.035, in which h is the height of the ramp and L is the effective plate length. The attenuation of the self-excited oscillation involves: a steady jet at the trailing-edge of the plate directed into the cavity; a lower magnitude upstream-oriented counterflow along the backside of the plate; and jet-like flows through the plate openings to satisfy the entrainment demands of the separating shear layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Oscillations of flow past perforated and slotted plates: attenuation via a leading-edge ramp

Loading next page...
 
/lp/springer_journal/oscillations-of-flow-past-perforated-and-slotted-plates-attenuation-Wi6Mo7OkiD
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0272-8
Publisher site
See Article on Publisher Site

Abstract

The present investigation aims to attenuate purely hydrodynamic, long-wavelength, self-excited oscillations of flow past a perforated or slotted plate by deflection of the inflow with a small ramp located at the leading-edge of the plate. Digital particle image velocimetry is complemented by unsteady pressure measurements to determine the underlying physics associated with attenuation of the oscillations. Irrespective of whether a perforated or slotted plate is employed, complete attenuation of the pressure fluctuations associated with the oscillation can be achieved for dimensionless deflection ratios of h/L ≥ 0.035, in which h is the height of the ramp and L is the effective plate length. The attenuation of the self-excited oscillation involves: a steady jet at the trailing-edge of the plate directed into the cavity; a lower magnitude upstream-oriented counterflow along the backside of the plate; and jet-like flows through the plate openings to satisfy the entrainment demands of the separating shear layer.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 24, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off