OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice

OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice Plant morphogenesis is highly dependent on the regulation of cell division and expansion. The organization of the cellulose microfibrils in the cell wall is a key determinant of cell expansion. Previously, a dwarf mutant with fewer tillers, Osbc1l4 (Oryza sativa brittle culm 1 like 4), was identified by screening a rice T-DNA insertion mutant library. It is reported here that OsBC1L4 encodes a COBRA-like protein that exhibits typical structural features of a glycosylphosphatidylinositol-anchor protein. The T-DNA insertion in OsBC1L4 results in abnormal cell expansion. A decrease in cellulose content but the increase in pectin and starch contents was identified in Osbc1l4 mutants by measuring the content of wall components. OsBC1L4 was expressed in all tissues/organs examined, with a low level in leaves. OsBC1L4 protein is mainly located in the cell wall and plasma membrane. Correlation analysis indicated that the expression of OsBC1L4 was highly correlated to that of several primary wall-forming cellulose synthase genes (CESAs). Moreover, the expression level of several cellulose-related genes is increased in Osbc1l4 mutants, which suggests that a feedback mechanism may exist during cellulose synthesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice

Loading next page...
 
/lp/springer_journal/osbc1l4-encodes-a-cobra-like-protein-that-affects-cellulose-synthesis-AHbWAm7PuM
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Pathology; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9730-z
Publisher site
See Article on Publisher Site

Abstract

Plant morphogenesis is highly dependent on the regulation of cell division and expansion. The organization of the cellulose microfibrils in the cell wall is a key determinant of cell expansion. Previously, a dwarf mutant with fewer tillers, Osbc1l4 (Oryza sativa brittle culm 1 like 4), was identified by screening a rice T-DNA insertion mutant library. It is reported here that OsBC1L4 encodes a COBRA-like protein that exhibits typical structural features of a glycosylphosphatidylinositol-anchor protein. The T-DNA insertion in OsBC1L4 results in abnormal cell expansion. A decrease in cellulose content but the increase in pectin and starch contents was identified in Osbc1l4 mutants by measuring the content of wall components. OsBC1L4 was expressed in all tissues/organs examined, with a low level in leaves. OsBC1L4 protein is mainly located in the cell wall and plasma membrane. Correlation analysis indicated that the expression of OsBC1L4 was highly correlated to that of several primary wall-forming cellulose synthase genes (CESAs). Moreover, the expression level of several cellulose-related genes is increased in Osbc1l4 mutants, which suggests that a feedback mechanism may exist during cellulose synthesis.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 25, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off