OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice

OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice Plant morphogenesis is highly dependent on the regulation of cell division and expansion. The organization of the cellulose microfibrils in the cell wall is a key determinant of cell expansion. Previously, a dwarf mutant with fewer tillers, Osbc1l4 (Oryza sativa brittle culm 1 like 4), was identified by screening a rice T-DNA insertion mutant library. It is reported here that OsBC1L4 encodes a COBRA-like protein that exhibits typical structural features of a glycosylphosphatidylinositol-anchor protein. The T-DNA insertion in OsBC1L4 results in abnormal cell expansion. A decrease in cellulose content but the increase in pectin and starch contents was identified in Osbc1l4 mutants by measuring the content of wall components. OsBC1L4 was expressed in all tissues/organs examined, with a low level in leaves. OsBC1L4 protein is mainly located in the cell wall and plasma membrane. Correlation analysis indicated that the expression of OsBC1L4 was highly correlated to that of several primary wall-forming cellulose synthase genes (CESAs). Moreover, the expression level of several cellulose-related genes is increased in Osbc1l4 mutants, which suggests that a feedback mechanism may exist during cellulose synthesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice

Loading next page...
 
/lp/springer_journal/osbc1l4-encodes-a-cobra-like-protein-that-affects-cellulose-synthesis-AHbWAm7PuM
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Pathology; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9730-z
Publisher site
See Article on Publisher Site

Abstract

Plant morphogenesis is highly dependent on the regulation of cell division and expansion. The organization of the cellulose microfibrils in the cell wall is a key determinant of cell expansion. Previously, a dwarf mutant with fewer tillers, Osbc1l4 (Oryza sativa brittle culm 1 like 4), was identified by screening a rice T-DNA insertion mutant library. It is reported here that OsBC1L4 encodes a COBRA-like protein that exhibits typical structural features of a glycosylphosphatidylinositol-anchor protein. The T-DNA insertion in OsBC1L4 results in abnormal cell expansion. A decrease in cellulose content but the increase in pectin and starch contents was identified in Osbc1l4 mutants by measuring the content of wall components. OsBC1L4 was expressed in all tissues/organs examined, with a low level in leaves. OsBC1L4 protein is mainly located in the cell wall and plasma membrane. Correlation analysis indicated that the expression of OsBC1L4 was highly correlated to that of several primary wall-forming cellulose synthase genes (CESAs). Moreover, the expression level of several cellulose-related genes is increased in Osbc1l4 mutants, which suggests that a feedback mechanism may exist during cellulose synthesis.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 25, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off