Orofacial proprioceptive thalamus of the rat

Orofacial proprioceptive thalamus of the rat The ascending pathway mediating proprioception from the orofacial region is still not fully known. The present study elucidated the relay of jaw-closing muscle spindle (JCMS) inputs from brainstem to thalamus in rats. We injected an anterograde tracer into the electrophysiologically identified supratrigeminal nucleus (Su5), known to receive JCMS input. Many thalamic axon terminals were labeled and were found mainly contralaterally in a small, unpredicted area of the caudo-ventromedial edge (VPMcvm) of ventral posteromedial thalamic nucleus (VPM). Electrical stimulation of the masseter nerve and passive jaw movements induced large responses in the VPMcvm. The VPMcvm is far from the rostrodorsal part of ventral posterolateral thalamic nucleus (VPL) where proprioceptive inputs from the body are represented. After injection of a retrograde tracer into the electrophysiologically identified VPMcvm, many neurons were labeled almost exclusively in the contralateral Su5, whereas no labeled neurons were found in the principal sensory trigeminal nucleus (Pr5) and spinal trigeminal nucleus (Sp5). In contrast, after injection of a retrograde tracer into the core of VPM, many neurons were labeled contralaterally in the Pr5 and Sp5, but none in the Su5. We conclude that JCMS input excites trigeminothalamic projection neurons in the Su5 which project primarily to the VPMcvm in marked contrast to other proprioceptors and sensory receptors in the orofacial region which project to the core VPM. These findings suggest that lesions or deep brain stimulation in the human equivalent of VPMcvm may be useful for treatment of movement disorders (e.g., orofacial tremor) without affecting other sensations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Structure and Function Springer Journals

Loading next page...
 
/lp/springer_journal/orofacial-proprioceptive-thalamus-of-the-rat-MKlCuNKxso
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Neurosciences; Cell Biology; Neurology
ISSN
1863-2653
eISSN
1863-2661
D.O.I.
10.1007/s00429-016-1363-1
Publisher site
See Article on Publisher Site

Abstract

The ascending pathway mediating proprioception from the orofacial region is still not fully known. The present study elucidated the relay of jaw-closing muscle spindle (JCMS) inputs from brainstem to thalamus in rats. We injected an anterograde tracer into the electrophysiologically identified supratrigeminal nucleus (Su5), known to receive JCMS input. Many thalamic axon terminals were labeled and were found mainly contralaterally in a small, unpredicted area of the caudo-ventromedial edge (VPMcvm) of ventral posteromedial thalamic nucleus (VPM). Electrical stimulation of the masseter nerve and passive jaw movements induced large responses in the VPMcvm. The VPMcvm is far from the rostrodorsal part of ventral posterolateral thalamic nucleus (VPL) where proprioceptive inputs from the body are represented. After injection of a retrograde tracer into the electrophysiologically identified VPMcvm, many neurons were labeled almost exclusively in the contralateral Su5, whereas no labeled neurons were found in the principal sensory trigeminal nucleus (Pr5) and spinal trigeminal nucleus (Sp5). In contrast, after injection of a retrograde tracer into the core of VPM, many neurons were labeled contralaterally in the Pr5 and Sp5, but none in the Su5. We conclude that JCMS input excites trigeminothalamic projection neurons in the Su5 which project primarily to the VPMcvm in marked contrast to other proprioceptors and sensory receptors in the orofacial region which project to the core VPM. These findings suggest that lesions or deep brain stimulation in the human equivalent of VPMcvm may be useful for treatment of movement disorders (e.g., orofacial tremor) without affecting other sensations.

Journal

Brain Structure and FunctionSpringer Journals

Published: Apr 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off