Origins of Portal Hypertension in Nonalcoholic Fatty Liver Disease

Origins of Portal Hypertension in Nonalcoholic Fatty Liver Disease Nonalcoholic fatty liver disease (NAFLD) advanced to cirrhosis is often complicated by clinically significant portal hypertension, which is primarily caused by increased intrahepatic vascular resistance. Liver fibrosis has been identified as a critical determinant of this process. However, there is evidence that portal venous pressure may begin to rise in the earliest stages of NAFLD when fibrosis is far less advanced or absent. The biological and clinical significance of these early changes in sinusoidal homeostasis remains unclear. Experimental and human observations indicate that sinusoidal space restriction due to hepatocellular lipid accumulation and ballooning may impair sinusoidal flow and generate shear stress, increasingly disrupting sinusoidal microcirculation. Sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells are key partners of hepatocytes affected by NAFLD in promoting endothelial dysfunction through enhanced contractility, capillarization, adhesion and entrapment of blood cells, extracellular matrix deposition, and neovascularization. These biomechanical and rheological changes are aggravated by a dysfunctional gut–liver axis and splanchnic vasoregulation, culminating in fibrosis and clinically significant portal hypertension. We may speculate that increased portal venous pressure is an essential element of the pathogenesis across the entire spectrum of NAFLD. Improved methods of noninvasive portal venous pressure monitoring will hopefully give new insights into the pathobiology of NAFLD and help efforts to identify patients at increased risk for adverse outcomes. In addition, novel drug candidates targeting reversible components of aberrant sinusoidal circulation may prevent progression in NAFLD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Digestive Diseases and Sciences Springer Journals

Origins of Portal Hypertension in Nonalcoholic Fatty Liver Disease

Loading next page...
 
/lp/springer_journal/origins-of-portal-hypertension-in-nonalcoholic-fatty-liver-disease-Wesg80TAWv
Publisher
Springer Journals
Copyright
Copyright © 2018 by This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply
Subject
Medicine & Public Health; Gastroenterology; Hepatology; Oncology; Transplant Surgery; Biochemistry, general
ISSN
0163-2116
eISSN
1573-2568
D.O.I.
10.1007/s10620-017-4903-5
Publisher site
See Article on Publisher Site

Abstract

Nonalcoholic fatty liver disease (NAFLD) advanced to cirrhosis is often complicated by clinically significant portal hypertension, which is primarily caused by increased intrahepatic vascular resistance. Liver fibrosis has been identified as a critical determinant of this process. However, there is evidence that portal venous pressure may begin to rise in the earliest stages of NAFLD when fibrosis is far less advanced or absent. The biological and clinical significance of these early changes in sinusoidal homeostasis remains unclear. Experimental and human observations indicate that sinusoidal space restriction due to hepatocellular lipid accumulation and ballooning may impair sinusoidal flow and generate shear stress, increasingly disrupting sinusoidal microcirculation. Sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells are key partners of hepatocytes affected by NAFLD in promoting endothelial dysfunction through enhanced contractility, capillarization, adhesion and entrapment of blood cells, extracellular matrix deposition, and neovascularization. These biomechanical and rheological changes are aggravated by a dysfunctional gut–liver axis and splanchnic vasoregulation, culminating in fibrosis and clinically significant portal hypertension. We may speculate that increased portal venous pressure is an essential element of the pathogenesis across the entire spectrum of NAFLD. Improved methods of noninvasive portal venous pressure monitoring will hopefully give new insights into the pathobiology of NAFLD and help efforts to identify patients at increased risk for adverse outcomes. In addition, novel drug candidates targeting reversible components of aberrant sinusoidal circulation may prevent progression in NAFLD.

Journal

Digestive Diseases and SciencesSpringer Journals

Published: Jan 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off