Origin of C type adakite magmas in the NE Xing’an block, NE China and tectonic implication

Origin of C type adakite magmas in the NE Xing’an block, NE China and tectonic implication In this paper, we report new whole-rock geochemical and zircon U–Pb data for monzogranites in the NE Xing’an block. These data constrained the petrogenesis of C type (high Sr/Y) adakitic rocks and showed the spatial extent of the influence of the Mongol-Okhostsk ocean tectonic regime and the collision between the Jiamusi Massif and Songliao Terrane. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicated that the monzogranites in the studied area were emplaced in the Early Jurassic (~180 Ma). These rocks were characterized by unusally high SiO2 (≥67.49), and Sr (461–759 ppm), but strikingly low Y (4.63–8.06 ppm) and HREE (∑HREE = 3.83–6.49 ppm, Yb = 0.5–0.77 ppm) contents, with therefore high Sr/Y (67.2–119) and (La/Yb)N (29.7–41.5) ratios, showing the geochemical characteristics of C type adakitic granite. The data displayed negligible Eu anomalies (Eu/Eu* = 0.77–1.08), LREE-enriched and pronounced negative Nb and Ta anomalies. The C-type adakites in the studied area were most likely derived from the partial melting of a thickened lower continental curst. The magma source is most likely dominated by amphibolites and garnet amphibolites. In combination with previously-reported data from igneous rocks from the Mesozoic in NE China, we conclude that the Xing’an block was influenced by the Mongol-Okhotsk subduction tectonic system, and experiences compressive settings from the amalgamation of the Jiamusi block in the east of the CAOB. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chinese Journal of Geochemistry Springer Journals

Origin of C type adakite magmas in the NE Xing’an block, NE China and tectonic implication

Loading next page...
 
/lp/springer_journal/origin-of-c-type-adakite-magmas-in-the-ne-xing-an-block-ne-china-and-nWUjUkIj0Q
Publisher
Science Press
Copyright
Copyright © 2017 by Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geochemistry
ISSN
1000-9426
eISSN
2365-7499
D.O.I.
10.1007/s11631-017-0190-2
Publisher site
See Article on Publisher Site

Abstract

In this paper, we report new whole-rock geochemical and zircon U–Pb data for monzogranites in the NE Xing’an block. These data constrained the petrogenesis of C type (high Sr/Y) adakitic rocks and showed the spatial extent of the influence of the Mongol-Okhostsk ocean tectonic regime and the collision between the Jiamusi Massif and Songliao Terrane. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicated that the monzogranites in the studied area were emplaced in the Early Jurassic (~180 Ma). These rocks were characterized by unusally high SiO2 (≥67.49), and Sr (461–759 ppm), but strikingly low Y (4.63–8.06 ppm) and HREE (∑HREE = 3.83–6.49 ppm, Yb = 0.5–0.77 ppm) contents, with therefore high Sr/Y (67.2–119) and (La/Yb)N (29.7–41.5) ratios, showing the geochemical characteristics of C type adakitic granite. The data displayed negligible Eu anomalies (Eu/Eu* = 0.77–1.08), LREE-enriched and pronounced negative Nb and Ta anomalies. The C-type adakites in the studied area were most likely derived from the partial melting of a thickened lower continental curst. The magma source is most likely dominated by amphibolites and garnet amphibolites. In combination with previously-reported data from igneous rocks from the Mesozoic in NE China, we conclude that the Xing’an block was influenced by the Mongol-Okhotsk subduction tectonic system, and experiences compressive settings from the amalgamation of the Jiamusi block in the east of the CAOB.

Journal

Chinese Journal of GeochemistrySpringer Journals

Published: Jun 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial