Organophosphine ligands in PtPX2Y and PtPXYZ complexes; structural aspects

Organophosphine ligands in PtPX2Y and PtPXYZ complexes; structural aspects This review covers over ninety platinum complexes with PtPX2Y and PtPXYZ inner coordination spheres, in which the P-donor ligands are organomonophosphines. These complexes crystallize in four crystal systems: tetragonal (×3), orthorhombic (×17), triclinic (×20) and monoclinic (×56). Complexes with the PtPX2Y chromophore exist in cis- as well as trans-configurations; however, the latter prevails. There are four types of ligands which create such chromophores: monodentate (H, OL, NL, CO, BL, Cl, SL, Br, SeL and I); homobidentate (O2L, N2L, S2L, Se2L and As2L); heterobidentate (O/N, O/S, N/S, N/Se and N/Te); and heterotridentate (O/O/N, N/N/S, N/N/Se, O/S/S, Se/N/Se and O/N/S). The chelating ligands create four-, five- and six-membered metallocycles, and the effects of both steric and electronic factors can be seen from the values of the L–Pt–L bite angles. The structural parameters are analyzed and discussed, with particular attention to trans-effects. Three types of isomerism are identified, namely cis–trans, distortion and ligands. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transition Metal Chemistry Springer Journals

Organophosphine ligands in PtPX2Y and PtPXYZ complexes; structural aspects

Loading next page...
 
/lp/springer_journal/organophosphine-ligands-in-ptpx2y-and-ptpxyz-complexes-structural-bbpFYOy04F
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry; Organometallic Chemistry
ISSN
0340-4285
eISSN
1572-901X
D.O.I.
10.1007/s11243-017-0153-9
Publisher site
See Article on Publisher Site

Abstract

This review covers over ninety platinum complexes with PtPX2Y and PtPXYZ inner coordination spheres, in which the P-donor ligands are organomonophosphines. These complexes crystallize in four crystal systems: tetragonal (×3), orthorhombic (×17), triclinic (×20) and monoclinic (×56). Complexes with the PtPX2Y chromophore exist in cis- as well as trans-configurations; however, the latter prevails. There are four types of ligands which create such chromophores: monodentate (H, OL, NL, CO, BL, Cl, SL, Br, SeL and I); homobidentate (O2L, N2L, S2L, Se2L and As2L); heterobidentate (O/N, O/S, N/S, N/Se and N/Te); and heterotridentate (O/O/N, N/N/S, N/N/Se, O/S/S, Se/N/Se and O/N/S). The chelating ligands create four-, five- and six-membered metallocycles, and the effects of both steric and electronic factors can be seen from the values of the L–Pt–L bite angles. The structural parameters are analyzed and discussed, with particular attention to trans-effects. Three types of isomerism are identified, namely cis–trans, distortion and ligands.

Journal

Transition Metal ChemistrySpringer Journals

Published: May 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off