Organizational Principles of the Connexin-Related Brain Transcriptome

Organizational Principles of the Connexin-Related Brain Transcriptome We have found that deletion of genes encoding the gap junction proteins Cx43, Cx32 and Cx36 alter the expression levels of large numbers of genes in mouse brain located on all chromosomes and encoding proteins from all major functional categories. Gene regulation in Cx32 and Cx43 null brains was more similar than that in the Cx36 null brain, suggesting the possibility of transcriptomic controls exerted by both genes on both astrocytes and oligodendrocytes. In order to explore the nature of expression linkage among the genes, we examined coordinated expression patterns in wild-type and connexin null brains. Coordination with Cx43 in wild-type brain predicted regulation in Cx43 nulls with considerable accuracy. Moreover, interlinkage within gene networks was greatly perturbed in the Cx43 null brain. These findings suggest several principles regarding regulatory transcriptomic networks involving gap junction genes and raise the issue of the underlying cause of connexin null phenotypes as well as mechanisms of regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Organizational Principles of the Connexin-Related Brain Transcriptome

Loading next page...
 
/lp/springer_journal/organizational-principles-of-the-connexin-related-brain-transcriptome-bttfc01S9h
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-9049-5
Publisher site
See Article on Publisher Site

Abstract

We have found that deletion of genes encoding the gap junction proteins Cx43, Cx32 and Cx36 alter the expression levels of large numbers of genes in mouse brain located on all chromosomes and encoding proteins from all major functional categories. Gene regulation in Cx32 and Cx43 null brains was more similar than that in the Cx36 null brain, suggesting the possibility of transcriptomic controls exerted by both genes on both astrocytes and oligodendrocytes. In order to explore the nature of expression linkage among the genes, we examined coordinated expression patterns in wild-type and connexin null brains. Coordination with Cx43 in wild-type brain predicted regulation in Cx43 nulls with considerable accuracy. Moreover, interlinkage within gene networks was greatly perturbed in the Cx43 null brain. These findings suggest several principles regarding regulatory transcriptomic networks involving gap junction genes and raise the issue of the underlying cause of connexin null phenotypes as well as mechanisms of regulation.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 27, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off