Organization, not duplication, triggers silencing in a complex transgene locus in rice

Organization, not duplication, triggers silencing in a complex transgene locus in rice Despite the presence in nature of many functional gene families that contain several to many highly similar sequences, the presence of identical DNA sequence repeats is widely thought to predispose transgene inserts to homology dependent gene silencing (HDGS). The induction of transcriptional gene silencing (TGS) by RNAs homologous to promoter sequences has been reported recently in Arabidopsis and humans. However, mechanisms for TGS have not been studied in detail for rice, the most widely cultivated crop plant. Taking advantage of a well-characterized homozygous silenced transgenic rice line (siJKA), supertransformation was performed with a binary vector bearing mUbi 1 and 35S promoter sequences identical to those in the resident transgenes. Analysis of the incoming and resident transgenes in the supertransformants revealed that the incoming mUbi1 transgene promoter was not silenced whereas the incoming 35S transgene promoter was silenced. That the resident silenced mUbi1-bar was not reactivated in these experiments as a result of passage through tissue culture and regeneration was established by the finding that regenerants from siJKA immature embryos were all silenced for mUbi1-bar. In a parallel experiment, when wild type rice calli were transformed with the same binary vector, neither of the incoming transgene promoters was silenced. Following 5-azacytidine (5-azaC) treatment of siJKA, aberrant RNA species corresponding to the 35S promoter, but not to the mUbi1 promoter, were detected. Nevertheless, no 21–25 nt RNAs corresponding to the 35S promoter sequence were detected. These results, together with detailed analyses of the progenies from the primary transformants and supertransformants, revealed that HDGS of the resident silenced locus was caused not by simple transgene duplication, but by aberrant transcripts derived from rearranged promoters present in siJKA. Practical consequences of this study include a justification for the use of multiple copies of a given promoter for transformation without inducing silencing, provided that their genomic integration does not result in aberrant transcription of the promoters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Organization, not duplication, triggers silencing in a complex transgene locus in rice

Loading next page...
 
/lp/springer_journal/organization-not-duplication-triggers-silencing-in-a-complex-transgene-Ale60HeYtT
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-5101-y
Publisher site
See Article on Publisher Site

Abstract

Despite the presence in nature of many functional gene families that contain several to many highly similar sequences, the presence of identical DNA sequence repeats is widely thought to predispose transgene inserts to homology dependent gene silencing (HDGS). The induction of transcriptional gene silencing (TGS) by RNAs homologous to promoter sequences has been reported recently in Arabidopsis and humans. However, mechanisms for TGS have not been studied in detail for rice, the most widely cultivated crop plant. Taking advantage of a well-characterized homozygous silenced transgenic rice line (siJKA), supertransformation was performed with a binary vector bearing mUbi 1 and 35S promoter sequences identical to those in the resident transgenes. Analysis of the incoming and resident transgenes in the supertransformants revealed that the incoming mUbi1 transgene promoter was not silenced whereas the incoming 35S transgene promoter was silenced. That the resident silenced mUbi1-bar was not reactivated in these experiments as a result of passage through tissue culture and regeneration was established by the finding that regenerants from siJKA immature embryos were all silenced for mUbi1-bar. In a parallel experiment, when wild type rice calli were transformed with the same binary vector, neither of the incoming transgene promoters was silenced. Following 5-azacytidine (5-azaC) treatment of siJKA, aberrant RNA species corresponding to the 35S promoter, but not to the mUbi1 promoter, were detected. Nevertheless, no 21–25 nt RNAs corresponding to the 35S promoter sequence were detected. These results, together with detailed analyses of the progenies from the primary transformants and supertransformants, revealed that HDGS of the resident silenced locus was caused not by simple transgene duplication, but by aberrant transcripts derived from rearranged promoters present in siJKA. Practical consequences of this study include a justification for the use of multiple copies of a given promoter for transformation without inducing silencing, provided that their genomic integration does not result in aberrant transcription of the promoters.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 7, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off