Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids

Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids Uniparental activity of ribosomal RNA genes (rDNA) in interspecific hybrids is known as nucleolar dominance (ND). To see if difference in rDNA intergenic spacers (IGS) might be correlated with ND, we have used artificial Solanum allopolyploids and back-crossed lines. Combining fluorescence in situ hybridization and quantification of the level of the rRNA precursor by real-time PCR, we demonstrated that an expression hierarchy exists: In leaves, roots, and petals of the respective allopolyploids, rDNA of S lycopersicum (tomato) dominates over rDNA of S. tuberosum (potato), whereas rDNA of S. tuberosum dominates over that of the wild speciesS. bulbocastanum. Also in a monosomic addition line carrying only one NOR-bearing chromosome of tomato in a potato background the dominance effect was maintained. These results demonstrate that there is possible correlation between transcriptional dominance and number of conservative elements downstream of the transcription start in the Solanum rDNA. In anthers and callus tissues under-dominant rDNA was slightly (S. lycopersicum/S. tuberosum) or strongly (S. tuberosum/S. bulbocastanum) expressed indicating developmental modulation of ND. In leaves and petals, repression of the respective parental rDNA correlated with cytosine methylation at certain sites conserved in the IGS, whereas activation of under-dominant rDNA in anthers and callus tissues was not accompanied by considerable changes of the methylation pattern. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids

Loading next page...
 
/lp/springer_journal/organization-differential-expression-and-methylation-of-rdna-in-xRhJa93NFH
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-4678-x
Publisher site
See Article on Publisher Site

Abstract

Uniparental activity of ribosomal RNA genes (rDNA) in interspecific hybrids is known as nucleolar dominance (ND). To see if difference in rDNA intergenic spacers (IGS) might be correlated with ND, we have used artificial Solanum allopolyploids and back-crossed lines. Combining fluorescence in situ hybridization and quantification of the level of the rRNA precursor by real-time PCR, we demonstrated that an expression hierarchy exists: In leaves, roots, and petals of the respective allopolyploids, rDNA of S lycopersicum (tomato) dominates over rDNA of S. tuberosum (potato), whereas rDNA of S. tuberosum dominates over that of the wild speciesS. bulbocastanum. Also in a monosomic addition line carrying only one NOR-bearing chromosome of tomato in a potato background the dominance effect was maintained. These results demonstrate that there is possible correlation between transcriptional dominance and number of conservative elements downstream of the transcription start in the Solanum rDNA. In anthers and callus tissues under-dominant rDNA was slightly (S. lycopersicum/S. tuberosum) or strongly (S. tuberosum/S. bulbocastanum) expressed indicating developmental modulation of ND. In leaves and petals, repression of the respective parental rDNA correlated with cytosine methylation at certain sites conserved in the IGS, whereas activation of under-dominant rDNA in anthers and callus tissues was not accompanied by considerable changes of the methylation pattern.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off