Oral immunization of mice using Bifidobacterium longum expressing VP1 protein from enterovirus 71

Oral immunization of mice using Bifidobacterium longum expressing VP1 protein from enterovirus 71 Bifidobacterium longum is an attractive candidate for delivering biologically active proteins by the mucosal route due to its non-pathogenic and colonizing properties. Enterovirus 71 (EV71) has aroused widespread attention recently due to several epidemics, and great attention should be paid to the fact that there are currently no effective antiviral drugs or vaccines against EV71 infection. In this report, we described a recombinant B. longum that could be used to develop an oral vaccine against EV71 infection. A VP1 expression vector (pBBADs-VP1) was constructed by amplifying the EV71 VP1 gene and inserting it into the E. coli – Bifidobacterium shuttle expression vector pBBAD/Xs. Then, the expression of VP1 protein in pBBADs-VP1-transformed bacteria was demonstrated by western blot. In vivo studies indicated that oral immunization of BALB/c mice with pBBADs-VP1-transformed bacteria induced potent immune responses against EV71 infection, including virus-neutralising titers, anti-EV71-VP1 antibody and the induction of Th1 immune responses in the spleen and Peyer’s patches. Importantly, immunization of mother mice with this recombinant VP1-expressing B. longum conferred protection to neonatal mice. These results demonstrate that the novel oral vaccine utilizing B. longum expressing the VP1 protein might successfully elicit a specific immune response against EV71 infection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Oral immunization of mice using Bifidobacterium longum expressing VP1 protein from enterovirus 71

Loading next page...
 
/lp/springer_journal/oral-immunization-of-mice-using-bifidobacterium-longum-expressing-vp1-sYtqyLrHru
Publisher
Springer Vienna
Copyright
Copyright © 2013 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-012-1589-z
Publisher site
See Article on Publisher Site

Abstract

Bifidobacterium longum is an attractive candidate for delivering biologically active proteins by the mucosal route due to its non-pathogenic and colonizing properties. Enterovirus 71 (EV71) has aroused widespread attention recently due to several epidemics, and great attention should be paid to the fact that there are currently no effective antiviral drugs or vaccines against EV71 infection. In this report, we described a recombinant B. longum that could be used to develop an oral vaccine against EV71 infection. A VP1 expression vector (pBBADs-VP1) was constructed by amplifying the EV71 VP1 gene and inserting it into the E. coli – Bifidobacterium shuttle expression vector pBBAD/Xs. Then, the expression of VP1 protein in pBBADs-VP1-transformed bacteria was demonstrated by western blot. In vivo studies indicated that oral immunization of BALB/c mice with pBBADs-VP1-transformed bacteria induced potent immune responses against EV71 infection, including virus-neutralising titers, anti-EV71-VP1 antibody and the induction of Th1 immune responses in the spleen and Peyer’s patches. Importantly, immunization of mother mice with this recombinant VP1-expressing B. longum conferred protection to neonatal mice. These results demonstrate that the novel oral vaccine utilizing B. longum expressing the VP1 protein might successfully elicit a specific immune response against EV71 infection.

Journal

Archives of VirologySpringer Journals

Published: May 1, 2013

References

  • Development of enterovirus 71 vaccines
    Lee, MS; Chang, LY
  • Genetically engineered Bifidobacterium animalis expressing the Salmonella flagellin gene for the mucosal immunization in a mouse model
    Takata, T; Shirakawa, T; Kawasaki, Y; Kinoshita, S; Gotoh, A; Kano, Y; Kawabata, M
  • Encapsulated Bifidobacterium bifidum potentiates intestinal IgA production
    Park, JH; Um, JI; Lee, BJ; Goh, JS; Park, SY; Kim, WS; Kim, PH

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off