Optimizing the Terzaghi Estimator of the 3D Distribution of Rock Fracture Orientations

Optimizing the Terzaghi Estimator of the 3D Distribution of Rock Fracture Orientations Orientation statistics are prone to bias when surveyed with the scanline mapping technique in which the observed probabilities differ, depending on the intersection angle between the fracture and the scanline. This bias leads to 1D frequency statistical data that are poorly representative of the 3D distribution. A widely accessible estimator named after Terzaghi was developed to estimate 3D frequencies from 1D biased observations, but the estimation accuracy is limited for fractures at narrow intersection angles to scanlines (termed the blind zone). Although numerous works have concentrated on accuracy with respect to the blind zone, accuracy outside the blind zone has rarely been studied. This work contributes to the limited investigations of accuracy outside the blind zone through a qualitative assessment that deploys a mathematical derivation of the Terzaghi equation in conjunction with a quantitative evaluation that uses fractures simulation and verification of natural fractures. The results show that the estimator does not provide a precise estimate of 3D distributions and that the estimation accuracy is correlated with the grid size adopted by the estimator. To explore the potential for improving accuracy, the particular grid size producing maximum accuracy is identified from 168 combinations of grid sizes and two other parameters. The results demonstrate that the 2° × 2° grid size provides maximum accuracy for the estimator in most cases when applied outside the blind zone. However, if the global sample density exceeds 0.5°−2, then maximum accuracy occurs at a grid size of 1° × 1°. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rock Mechanics and Rock Engineering Springer Journals

Optimizing the Terzaghi Estimator of the 3D Distribution of Rock Fracture Orientations

Loading next page...
 
/lp/springer_journal/optimizing-the-terzaghi-estimator-of-the-3d-distribution-of-rock-stA1yPgEfx
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Earth Sciences; Geophysics/Geodesy; Civil Engineering
ISSN
0723-2632
eISSN
1434-453X
D.O.I.
10.1007/s00603-017-1254-7
Publisher site
See Article on Publisher Site

Abstract

Orientation statistics are prone to bias when surveyed with the scanline mapping technique in which the observed probabilities differ, depending on the intersection angle between the fracture and the scanline. This bias leads to 1D frequency statistical data that are poorly representative of the 3D distribution. A widely accessible estimator named after Terzaghi was developed to estimate 3D frequencies from 1D biased observations, but the estimation accuracy is limited for fractures at narrow intersection angles to scanlines (termed the blind zone). Although numerous works have concentrated on accuracy with respect to the blind zone, accuracy outside the blind zone has rarely been studied. This work contributes to the limited investigations of accuracy outside the blind zone through a qualitative assessment that deploys a mathematical derivation of the Terzaghi equation in conjunction with a quantitative evaluation that uses fractures simulation and verification of natural fractures. The results show that the estimator does not provide a precise estimate of 3D distributions and that the estimation accuracy is correlated with the grid size adopted by the estimator. To explore the potential for improving accuracy, the particular grid size producing maximum accuracy is identified from 168 combinations of grid sizes and two other parameters. The results demonstrate that the 2° × 2° grid size provides maximum accuracy for the estimator in most cases when applied outside the blind zone. However, if the global sample density exceeds 0.5°−2, then maximum accuracy occurs at a grid size of 1° × 1°.

Journal

Rock Mechanics and Rock EngineeringSpringer Journals

Published: Jun 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off