Optimizing spatial Min/Max aggregations

Optimizing spatial Min/Max aggregations Aggregate computation over a collection of spatial objects appears in many real-life applications. Aggregates are computed on values (weights) associated with spatial objects, for example, the temperature or rainfall over the area covered by the object. In this paper we concentrate on MIN/MAX aggregations: “given a query rectangle, find the minimum/maximum weight among all objects intersecting the query rectangle.” Traditionally such queries have been performed as range searches. Assuming that objects are indexed by a spatial access method (SAM), the MIN/MAX is computed while retrieving those objects intersecting the query interval. This requires effort proportional to the number of objects satisfying the query, which may be large. A better approach is to maintain aggregate information among the index nodes of the spatial access method; then various index paths can be eliminated during the range search. Yet another approach is to build a specialized index that maintains the aggregate incrementally. We propose four novel optimizations for improving the performance of MIN/MAX queries when an index structure (traditional or specialized) is present. Moreover, we introduce the MR-tree, an R-tree-like dynamic specialized index that incorporates all four optimizations. Our experiments show that the MR-tree offers drastic performance improvement over previous solutions. As a byproduct of this work we present an optimized version of the MSB-tree, an index that has been proposed for the MIN/MAX computation over 1D interval objects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Optimizing spatial Min/Max aggregations

Loading next page...
 
/lp/springer_journal/optimizing-spatial-min-max-aggregations-OhQTgBLRT4
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-004-0142-4
Publisher site
See Article on Publisher Site

Abstract

Aggregate computation over a collection of spatial objects appears in many real-life applications. Aggregates are computed on values (weights) associated with spatial objects, for example, the temperature or rainfall over the area covered by the object. In this paper we concentrate on MIN/MAX aggregations: “given a query rectangle, find the minimum/maximum weight among all objects intersecting the query rectangle.” Traditionally such queries have been performed as range searches. Assuming that objects are indexed by a spatial access method (SAM), the MIN/MAX is computed while retrieving those objects intersecting the query interval. This requires effort proportional to the number of objects satisfying the query, which may be large. A better approach is to maintain aggregate information among the index nodes of the spatial access method; then various index paths can be eliminated during the range search. Yet another approach is to build a specialized index that maintains the aggregate incrementally. We propose four novel optimizations for improving the performance of MIN/MAX queries when an index structure (traditional or specialized) is present. Moreover, we introduce the MR-tree, an R-tree-like dynamic specialized index that incorporates all four optimizations. Our experiments show that the MR-tree offers drastic performance improvement over previous solutions. As a byproduct of this work we present an optimized version of the MSB-tree, an index that has been proposed for the MIN/MAX computation over 1D interval objects.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off