Optimizing satisfaction in a multi-courses allocation problem combined with a timetabling problem

Optimizing satisfaction in a multi-courses allocation problem combined with a timetabling problem The resource allocation problem and the timetabling problem are traditional kinds of NP-hard problems. Both problems can be found in universities where students can select courses they would like to attend before or after the timetabling is done. When demand exceeds capacity, the universities may allocate the available seats independently from the timetabling, but students may have then to decide which courses they are going to attend because of clashes in their timetable. To avoid this situation, some universities prepare their timetable considering students selection. In addition to that, students may submit preferences over courses, and the school administration has to assign seats and do the timetable considering both preferences and clashes. In this paper, both problems, seats allocation and timetabling, have been modeled separately and combined as constraint satisfaction optimization problems (CSOP). Two algorithms have been designed and implemented to find a solution to both problems simultaneously maximizing the satisfaction of students using a CSOP solver and an Ant colony optimization algorithm for the timetabling problem. The results of both algorithms are then compared. The allocation and timetabling procedures are based on preferences for courses defined by students, and on the administration’s constraints at Ecole Hôtelière de Lausanne. Three real data sets have been used to carry out a complete experimental analysis. High-quality solutions are obtained in a few minutes with both approaches; those solutions are currently used at Ecole Hôtelière de Lausanne. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

Optimizing satisfaction in a multi-courses allocation problem combined with a timetabling problem

Loading next page...
 
/lp/springer_journal/optimizing-satisfaction-in-a-multi-courses-allocation-problem-combined-PWF1yR7oL0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-016-2375-8
Publisher site
See Article on Publisher Site

Abstract

The resource allocation problem and the timetabling problem are traditional kinds of NP-hard problems. Both problems can be found in universities where students can select courses they would like to attend before or after the timetabling is done. When demand exceeds capacity, the universities may allocate the available seats independently from the timetabling, but students may have then to decide which courses they are going to attend because of clashes in their timetable. To avoid this situation, some universities prepare their timetable considering students selection. In addition to that, students may submit preferences over courses, and the school administration has to assign seats and do the timetable considering both preferences and clashes. In this paper, both problems, seats allocation and timetabling, have been modeled separately and combined as constraint satisfaction optimization problems (CSOP). Two algorithms have been designed and implemented to find a solution to both problems simultaneously maximizing the satisfaction of students using a CSOP solver and an Ant colony optimization algorithm for the timetabling problem. The results of both algorithms are then compared. The allocation and timetabling procedures are based on preferences for courses defined by students, and on the administration’s constraints at Ecole Hôtelière de Lausanne. Three real data sets have been used to carry out a complete experimental analysis. High-quality solutions are obtained in a few minutes with both approaches; those solutions are currently used at Ecole Hôtelière de Lausanne.

Journal

Soft ComputingSpringer Journals

Published: Oct 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off