Optimizing multiple dimensional queries simultaneously in multidimensional databases

Optimizing multiple dimensional queries simultaneously in multidimensional databases Some significant progress related to multidimensional data analysis has been achieved in the past few years, including the design of fast algorithms for computing datacubes, selecting some precomputed group-bys to materialize, and designing efficient storage structures for multidimensional data. However, little work has been carried out on multidimensional query optimization issues. Particularly the response time (or evaluation cost) for answering several related dimensional queries simultaneously is crucial to the OLAP applications. Recently, Zhao et al. first exploited this problem by presenting three heuristic algorithms. In this paper we first consider in detail two cases of the problem in which all the queries are either hash-based star joins or index-based star joins only. In the case of the hash-based star join, we devise a polynomial approximation algorithm which delivers a plan whose evaluation cost is $ O(n^{\epsilon }$) times the optimal, where n is the number of queries and $ \epsilon $ is a fixed constant with $0<\epsilon \leq 1$ . We also present an exponential algorithm which delivers a plan with the optimal evaluation cost. In the case of the index-based star join, we present a heuristic algorithm which delivers a plan whose evaluation cost is n times the optimal, and an exponential algorithm which delivers a plan with the optimal evaluation cost. We then consider a general case in which both hash-based star-join and index-based star-join queries are included. For this case, we give a possible improvement on the work of Zhao et al., based on an analysis of their solutions. We also develop another heuristic and an exact algorithm for the problem. We finally conduct a performance study by implementing our algorithms. The experimental results demonstrate that the solutions delivered for the restricted cases are always within two times of the optimal, which confirms our theoretical upper bounds. Actually these experiments produce much better results than our theoretical estimates. To the best of our knowledge, this is the only development of polynomial algorithms for the first two cases which are able to deliver plans with deterministic performance guarantees in terms of the qualities of the plans generated. The previous approaches including that of [ZDNS98] may generate a feasible plan for the problem in these two cases, but they do not provide any performance guarantee, i.e., the plans generated by their algorithms can be arbitrarily far from the optimal one. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Optimizing multiple dimensional queries simultaneously in multidimensional databases

Loading next page...
 
/lp/springer_journal/optimizing-multiple-dimensional-queries-simultaneously-in-gAnDaZhnzf
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780050011
Publisher site
See Article on Publisher Site

Abstract

Some significant progress related to multidimensional data analysis has been achieved in the past few years, including the design of fast algorithms for computing datacubes, selecting some precomputed group-bys to materialize, and designing efficient storage structures for multidimensional data. However, little work has been carried out on multidimensional query optimization issues. Particularly the response time (or evaluation cost) for answering several related dimensional queries simultaneously is crucial to the OLAP applications. Recently, Zhao et al. first exploited this problem by presenting three heuristic algorithms. In this paper we first consider in detail two cases of the problem in which all the queries are either hash-based star joins or index-based star joins only. In the case of the hash-based star join, we devise a polynomial approximation algorithm which delivers a plan whose evaluation cost is $ O(n^{\epsilon }$) times the optimal, where n is the number of queries and $ \epsilon $ is a fixed constant with $0<\epsilon \leq 1$ . We also present an exponential algorithm which delivers a plan with the optimal evaluation cost. In the case of the index-based star join, we present a heuristic algorithm which delivers a plan whose evaluation cost is n times the optimal, and an exponential algorithm which delivers a plan with the optimal evaluation cost. We then consider a general case in which both hash-based star-join and index-based star-join queries are included. For this case, we give a possible improvement on the work of Zhao et al., based on an analysis of their solutions. We also develop another heuristic and an exact algorithm for the problem. We finally conduct a performance study by implementing our algorithms. The experimental results demonstrate that the solutions delivered for the restricted cases are always within two times of the optimal, which confirms our theoretical upper bounds. Actually these experiments produce much better results than our theoretical estimates. To the best of our knowledge, this is the only development of polynomial algorithms for the first two cases which are able to deliver plans with deterministic performance guarantees in terms of the qualities of the plans generated. The previous approaches including that of [ZDNS98] may generate a feasible plan for the problem in these two cases, but they do not provide any performance guarantee, i.e., the plans generated by their algorithms can be arbitrarily far from the optimal one.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off