Optimized IoT service placement in the fog

Optimized IoT service placement in the fog The Internet of Things (IoT) leads to an ever-growing presence of ubiquitous networked computing devices in public, business, and private spaces. These devices do not simply act as sensors, but feature computational, storage, and networking resources. Being located at the edge of the network, these resources can be exploited to execute IoT applications in a distributed manner. This concept is known as fog computing. While the theoretical foundations of fog computing are already established, there is a lack of resource provisioning approaches to enable the exploitation of fog-based computational resources. To resolve this shortcoming, we present a conceptual fog computing framework. Then, we model the service placement problem for IoT applications over fog resources as an optimization problem, which explicitly considers the heterogeneity of applications and resources in terms of Quality of Service attributes. Finally, we propose a genetic algorithm as a problem resolution heuristic and show, through experiments, that the service execution can achieve a reduction of network communication delays when the genetic algorithm is used, and a better utilization of fog resources when the exact optimization method is applied. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Service Oriented Computing and Applications Springer Journals
Loading next page...
 
/lp/springer_journal/optimized-iot-service-placement-in-the-fog-X7Ls0fz1ps
Publisher
Springer London
Copyright
Copyright © 2017 by The Author(s)
Subject
Computer Science; Computer Systems Organization and Communication Networks; Software Engineering/Programming and Operating Systems; e-Commerce/e-business; Computer Appl. in Administrative Data Processing; Management of Computing and Information Systems; IT in Business
ISSN
1863-2386
eISSN
1863-2394
D.O.I.
10.1007/s11761-017-0219-8
Publisher site
See Article on Publisher Site

Abstract

The Internet of Things (IoT) leads to an ever-growing presence of ubiquitous networked computing devices in public, business, and private spaces. These devices do not simply act as sensors, but feature computational, storage, and networking resources. Being located at the edge of the network, these resources can be exploited to execute IoT applications in a distributed manner. This concept is known as fog computing. While the theoretical foundations of fog computing are already established, there is a lack of resource provisioning approaches to enable the exploitation of fog-based computational resources. To resolve this shortcoming, we present a conceptual fog computing framework. Then, we model the service placement problem for IoT applications over fog resources as an optimization problem, which explicitly considers the heterogeneity of applications and resources in terms of Quality of Service attributes. Finally, we propose a genetic algorithm as a problem resolution heuristic and show, through experiments, that the service execution can achieve a reduction of network communication delays when the genetic algorithm is used, and a better utilization of fog resources when the exact optimization method is applied.

Journal

Service Oriented Computing and ApplicationsSpringer Journals

Published: Oct 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off