Optimized geometry, electronic structure and Ag adsorption property of nanosheet graphene with different symmetry shapes: a theoretical investigation

Optimized geometry, electronic structure and Ag adsorption property of nanosheet graphene with... Optimized geometries and electronic structures of three different symmetry shapes of nanosheet graphenes with armchair and zig-zag edges were generated by using the generalized gradient approximation/Perdew–Burke–Ernzerhof (GGA/PBE) method of density function theory (DFT) with the double-zeta polarized (DZP) basis set. Based on the results, the calculated HOMO–LUMO energy gap (Eg = LUMO–HOMO) with different symmetry shapes, and nanosheet size for with zig-zag and armchair edges were also presented. Because the p π orbital was widely localized over the sheet surface, the calculated E g decreased with increasing the sheet size. Further, the quantum mechanics calculation was used to investigate the adsorption property of the Ag atom adsorbed to the nanosheet graphene (expressed by C90H30) surface. The calculations show that the Ag atom binds to the bridge site (B site) of triangular nanosheet graphene (C90H30) as it is the most stable adsorption site compared with others, and since it has higher formation energy (ΔE) with shorter distance between the Ag atom and the graphene surface. Above all, calculations suggest that the Ag-adsorbed nanosheet graphene is a good option as an adsorbent in environmental research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Optimized geometry, electronic structure and Ag adsorption property of nanosheet graphene with different symmetry shapes: a theoretical investigation

Loading next page...
 
/lp/springer_journal/optimized-geometry-electronic-structure-and-ag-adsorption-property-of-dQZRwGEbbp
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2435-9
Publisher site
See Article on Publisher Site

Abstract

Optimized geometries and electronic structures of three different symmetry shapes of nanosheet graphenes with armchair and zig-zag edges were generated by using the generalized gradient approximation/Perdew–Burke–Ernzerhof (GGA/PBE) method of density function theory (DFT) with the double-zeta polarized (DZP) basis set. Based on the results, the calculated HOMO–LUMO energy gap (Eg = LUMO–HOMO) with different symmetry shapes, and nanosheet size for with zig-zag and armchair edges were also presented. Because the p π orbital was widely localized over the sheet surface, the calculated E g decreased with increasing the sheet size. Further, the quantum mechanics calculation was used to investigate the adsorption property of the Ag atom adsorbed to the nanosheet graphene (expressed by C90H30) surface. The calculations show that the Ag atom binds to the bridge site (B site) of triangular nanosheet graphene (C90H30) as it is the most stable adsorption site compared with others, and since it has higher formation energy (ΔE) with shorter distance between the Ag atom and the graphene surface. Above all, calculations suggest that the Ag-adsorbed nanosheet graphene is a good option as an adsorbent in environmental research.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 21, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off