Optimized camera handover scheme in free-viewpoint video streaming

Optimized camera handover scheme in free-viewpoint video streaming Free-viewpoint video (FVV) is a promising approach that allows users to control their viewpoint and generate virtual views from any desired perspective. The individual user viewpoints are synthesized from two or more camera streams and correspondent depth sequences. In case of continuous viewpoint changes, the camera inputs of the view-synthesis process must be changed in a seamless way, to avoid the starvation of the viewpoint synthesizer algorithm. Starvation occurs when the desired user viewpoint cannot be synthesized with the currently streamed camera views, and thus, the FVV playout interrupts. In this paper, we propose three different camera handover schemes (TCC, MA, and SA) based on viewpoint prediction to minimize the probability of playout stalls and find the trade-off between the image quality and the camera handover frequency. Our simulation results show that the introduced camera switching methods can reduce the handover frequency with more than 40%, and hence, the viewpoint synthesis starvation and the playout interruption can be minimized. By providing seamless viewpoint changes, the quality of experience can be significantly improved, making the new FVV service more attractive in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Systems Springer Journals

Optimized camera handover scheme in free-viewpoint video streaming

Loading next page...
 
/lp/springer_journal/optimized-camera-handover-scheme-in-free-viewpoint-video-streaming-ohJPrKhPYk
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Operating Systems; Data Storage Representation; Data Encryption; Computer Graphics
ISSN
0942-4962
eISSN
1432-1882
D.O.I.
10.1007/s00530-017-0537-x
Publisher site
See Article on Publisher Site

Abstract

Free-viewpoint video (FVV) is a promising approach that allows users to control their viewpoint and generate virtual views from any desired perspective. The individual user viewpoints are synthesized from two or more camera streams and correspondent depth sequences. In case of continuous viewpoint changes, the camera inputs of the view-synthesis process must be changed in a seamless way, to avoid the starvation of the viewpoint synthesizer algorithm. Starvation occurs when the desired user viewpoint cannot be synthesized with the currently streamed camera views, and thus, the FVV playout interrupts. In this paper, we propose three different camera handover schemes (TCC, MA, and SA) based on viewpoint prediction to minimize the probability of playout stalls and find the trade-off between the image quality and the camera handover frequency. Our simulation results show that the introduced camera switching methods can reduce the handover frequency with more than 40%, and hence, the viewpoint synthesis starvation and the playout interruption can be minimized. By providing seamless viewpoint changes, the quality of experience can be significantly improved, making the new FVV service more attractive in the future.

Journal

Multimedia SystemsSpringer Journals

Published: Feb 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off