Optimization of protectant, salinity and freezing condition for freeze-drying preservation of Edwardsiella tarda

Optimization of protectant, salinity and freezing condition for freeze-drying preservation of... Novel preservation condition without ultra-low temperature is needed for the study of pathogen in marine fishes. Freeze-drying is such a method usually used for preservation of terrigenous bacteria. However, studies using freeze-drying method to preserving marine microorganisms remain very limited. In this study, we optimized the composition of protectants during the freeze-drying of Edwardsiella tarda, a fish pathogen that causes systemic infection in marine fishes. We found that the optimal composition of protectant mixture contained trehalose (8.0%), skim milk (12.0%), sodium citrate (2.0%), serum (12.0%) and PVP (2.0%). Orthogonal and interaction analyses demonstrated the interaction between serum and skim milk or sodium citrate. The highest survival rate of E. tarda was observed when the concentration of NaCl was 10.0, 30.0 and between 5.0 and 10.0 g L−1 for preparing TSB medium, E. tarda suspension and protectant mixture, respectively. When E. tarda was frozen at −80°C or −40°C for 6 h, its survival rate was higher than that under other tested conditions. Under the optimized conditions, when the protectant mixture was used during freeze-drying process, the survival rate (79.63%–82.30%) of E. tarda was significantly higher than that obtained using single protectant. Scanning electron microscopy (SEM) image indicated that E. tarda was embedded in thick matrix with detectable aggregation. In sum, the protectant mixture may be used as a novel cryoprotective additive for E. tarda. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Ocean University of China Springer Journals

Optimization of protectant, salinity and freezing condition for freeze-drying preservation of Edwardsiella tarda

Loading next page...
 
/lp/springer_journal/optimization-of-protectant-salinity-and-freezing-condition-for-freeze-a6qYrWzrb0
Publisher
Science Press
Copyright
Copyright © 2017 by Science Press, Ocean University of China and Springer-Verlag GmbH Germany
Subject
Earth Sciences; Oceanography; Meteorology
ISSN
1672-5182
eISSN
1993-5021
D.O.I.
10.1007/s11802-017-3331-7
Publisher site
See Article on Publisher Site

Abstract

Novel preservation condition without ultra-low temperature is needed for the study of pathogen in marine fishes. Freeze-drying is such a method usually used for preservation of terrigenous bacteria. However, studies using freeze-drying method to preserving marine microorganisms remain very limited. In this study, we optimized the composition of protectants during the freeze-drying of Edwardsiella tarda, a fish pathogen that causes systemic infection in marine fishes. We found that the optimal composition of protectant mixture contained trehalose (8.0%), skim milk (12.0%), sodium citrate (2.0%), serum (12.0%) and PVP (2.0%). Orthogonal and interaction analyses demonstrated the interaction between serum and skim milk or sodium citrate. The highest survival rate of E. tarda was observed when the concentration of NaCl was 10.0, 30.0 and between 5.0 and 10.0 g L−1 for preparing TSB medium, E. tarda suspension and protectant mixture, respectively. When E. tarda was frozen at −80°C or −40°C for 6 h, its survival rate was higher than that under other tested conditions. Under the optimized conditions, when the protectant mixture was used during freeze-drying process, the survival rate (79.63%–82.30%) of E. tarda was significantly higher than that obtained using single protectant. Scanning electron microscopy (SEM) image indicated that E. tarda was embedded in thick matrix with detectable aggregation. In sum, the protectant mixture may be used as a novel cryoprotective additive for E. tarda.

Journal

Journal of Ocean University of ChinaSpringer Journals

Published: Aug 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off