Optimization of photocatalytic activity of immobilized TiO2–P25 nanoparticles in the removal of phenazopyridine using response surface methodology

Optimization of photocatalytic activity of immobilized TiO2–P25 nanoparticles in the removal of... The photocatalytic degradation of phenazopyridine (PhP) as a model contaminant from pharmaceutical compounds was studied using batch-recirculated photoreactor packed with immobilized TiO2–P25 nanoparticles on glass beads. The effects of operational parameters (irradiation time, initial concentration of PhP, volume of solution, and volumetric flow rate) were evaluated by the response surface methodology (RSM). The proposed model of the RSM is a second order mathematical model. According to the results of ANOVA, initial concentration of PhP, volumetric flow rate, irradiation time, volume of solution, mutual effects of initial concentration of PhP × irradiation time, irradiation time × volume of solution and quadratic effects of initial concentration of PhP, and volume of solution are significant model parameters. The optimization process by RSM offers the following optimal conditions: PhP concentration 24 mg L–1, liquid volumetric flow rate 230 mL min–1, irradiation time 30 min, and volume of solution 300 mL. Under these conditions, the proposed removal percent of RSM is 90.28% which have good correspondence with experimental removal percent (87.36%). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Optimization of photocatalytic activity of immobilized TiO2–P25 nanoparticles in the removal of phenazopyridine using response surface methodology

Loading next page...
 
/lp/springer_journal/optimization-of-photocatalytic-activity-of-immobilized-tio2-p25-jb6ZUH5pvP
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S107042721609024X
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial