Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology

Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface... In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biological Physics Springer Journals

Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology

Loading next page...
 
/lp/springer_journal/optimization-of-monomethoxy-polyethyleneglycol-modified-oxalate-10xyQFt7XL

References (14)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Physics; Biological and Medical Physics, Biophysics; Biochemistry, general; Complex Systems; Neurosciences; Soft and Granular Matter, Complex Fluids and Microfluidics
ISSN
0092-0606
eISSN
1573-0689
DOI
10.1007/s10867-017-9461-8
pmid
28780598
Publisher site
See Article on Publisher Site

Abstract

In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.

Journal

Journal of Biological PhysicsSpringer Journals

Published: Aug 5, 2017

There are no references for this article.