Optimization of laser irradiation parameters for simulation of a transient radiation response in thin-film silicon-based microcircuits

Optimization of laser irradiation parameters for simulation of a transient radiation response in... A method for improving the efficiency of using laser radiation (LR) energy is discussed to implement high levels of dose rates by reducing the radiation wavelength. Generally, the optimal range of LR energy for the simulation of the transient radiation response in CMOS SOS/SOI microcircuits depends on the technological characteristics of production and ranges from 0.9 to 0.75 μm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Optimization of laser irradiation parameters for simulation of a transient radiation response in thin-film silicon-based microcircuits

Loading next page...
 
/lp/springer_journal/optimization-of-laser-irradiation-parameters-for-simulation-of-a-UTxSa4Bqvr
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739715010084
Publisher site
See Article on Publisher Site

Abstract

A method for improving the efficiency of using laser radiation (LR) energy is discussed to implement high levels of dose rates by reducing the radiation wavelength. Generally, the optimal range of LR energy for the simulation of the transient radiation response in CMOS SOS/SOI microcircuits depends on the technological characteristics of production and ranges from 0.9 to 0.75 μm.

Journal

Russian MicroelectronicsSpringer Journals

Published: Jan 7, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off