Optimization of ilmenite flotation process in the presence of microwave irradiation

Optimization of ilmenite flotation process in the presence of microwave irradiation In the present study, the effect of parameters, including microwave irradiation power, pH, dosage of chemical reagents (collector, depressant and activator) were studied by microflotation (in Hallimond tube) process. The mechanical flotation tests were carried out on optimum parameters obtained from microflotation tests. The software based on experimental design method (DX7) with the two-level full factorial design was applied to determine the parameter effects and to optimize the microflotation recovery. The optimum conditions were determined by analysis of variance (ANOVA), indicating that the irradiation power was the most effective parameter. The optimum values of parameters in the microflotation process are as follows: power of microwave (1000 W), pH (6.3), dosage of chemical reagents (sodium oleate 3.65 × 10-4 M as a collector, acidified sodium silicate 2 g L–1 as a depressant, and lead(II) nitrate 2.1 × 10–5 M as an activator). By applying these optimized parameters, a product with ilmenite recovery of 83.26% was predicted by the software. The results of microflotation tests indicated that an ilmenite recovery of 82.35% was achieved being very close to the predicted value. The results of mechanical flotation based on optimized condition showed that the recovery and separation efficiency of irradiated ilmenite were improved up to 86.03% and 48.61%, respectively, indicating the positive effect of irradiation on ilmenite floatability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Optimization of ilmenite flotation process in the presence of microwave irradiation

Loading next page...
 
/lp/springer_journal/optimization-of-ilmenite-flotation-process-in-the-presence-of-K0gp380y3R
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216080188
Publisher site
See Article on Publisher Site

Abstract

In the present study, the effect of parameters, including microwave irradiation power, pH, dosage of chemical reagents (collector, depressant and activator) were studied by microflotation (in Hallimond tube) process. The mechanical flotation tests were carried out on optimum parameters obtained from microflotation tests. The software based on experimental design method (DX7) with the two-level full factorial design was applied to determine the parameter effects and to optimize the microflotation recovery. The optimum conditions were determined by analysis of variance (ANOVA), indicating that the irradiation power was the most effective parameter. The optimum values of parameters in the microflotation process are as follows: power of microwave (1000 W), pH (6.3), dosage of chemical reagents (sodium oleate 3.65 × 10-4 M as a collector, acidified sodium silicate 2 g L–1 as a depressant, and lead(II) nitrate 2.1 × 10–5 M as an activator). By applying these optimized parameters, a product with ilmenite recovery of 83.26% was predicted by the software. The results of microflotation tests indicated that an ilmenite recovery of 82.35% was achieved being very close to the predicted value. The results of mechanical flotation based on optimized condition showed that the recovery and separation efficiency of irradiated ilmenite were improved up to 86.03% and 48.61%, respectively, indicating the positive effect of irradiation on ilmenite floatability.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Nov 24, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off