Optimization of cryogenic milling parameters for AFRP

Optimization of cryogenic milling parameters for AFRP This paper is aimed to restrain the defects such as fluff and ablation, which were often found in machining of the aramid fiber-reinforced composites (AFRP). The cooling method of spray liquid nitrogen was adopted in the orthogonal milling process. The processing parameters including cutting depth, cutting speed, cooling temperature, feed speed, and liquid nitrogen flow were considered in details, and their effects on the processing quality were researched and analyzed. The analysis optimization methods of processing parameter were employed for the influence on the machining surface quality. Meanwhile, the optimal machining surface quality was predicted and verified. The results show that the cryogenic way realizes a bigger improved role on machining quality than the conventional one for AFRP. As well as the influence order of processing parameters on the roughness is cutting depth, cutting speed, cooling temperature, feed speed, and liquid nitrogen flow. And the predicted result Ra = 0.557 μm of minimum surface roughness value is similar with the actual one Ra = 0.572 μm and verifies the feasibility of optimization method. For processing of AFRP, the cooling way of spray liquid nitrogen has a positive role with high quality and efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Optimization of cryogenic milling parameters for AFRP

Loading next page...
 
/lp/springer_journal/optimization-of-cryogenic-milling-parameters-for-afrp-cQ67fnwFfu
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0003-0
Publisher site
See Article on Publisher Site

Abstract

This paper is aimed to restrain the defects such as fluff and ablation, which were often found in machining of the aramid fiber-reinforced composites (AFRP). The cooling method of spray liquid nitrogen was adopted in the orthogonal milling process. The processing parameters including cutting depth, cutting speed, cooling temperature, feed speed, and liquid nitrogen flow were considered in details, and their effects on the processing quality were researched and analyzed. The analysis optimization methods of processing parameter were employed for the influence on the machining surface quality. Meanwhile, the optimal machining surface quality was predicted and verified. The results show that the cryogenic way realizes a bigger improved role on machining quality than the conventional one for AFRP. As well as the influence order of processing parameters on the roughness is cutting depth, cutting speed, cooling temperature, feed speed, and liquid nitrogen flow. And the predicted result Ra = 0.557 μm of minimum surface roughness value is similar with the actual one Ra = 0.572 μm and verifies the feasibility of optimization method. For processing of AFRP, the cooling way of spray liquid nitrogen has a positive role with high quality and efficiency.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jan 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off