Optimization of corn plant population according to management zones in Southern Brazil

Optimization of corn plant population according to management zones in Southern Brazil Precision agriculture relies on site-specific interventions determined by the spatial variability of factors driving plant growth. The main objective of this study was to assess the efficiency of variable-rate seeding of corn (Zea mays L.) with delineated management zones. This study involved two experiments carried out in Não-Me-Toque, Rio Grande do Sul, Brazil. For the first experiment, carried out in 2009/2010, management zones were delineated by the farmer’s knowledge of the crop field. The field was split into low (LZ), medium (MZ) and high (HZ) crop performance zones. In the second experiment, carried out in 2010/2011, management zones were delineated by overlaying standardized yield data from nine crop seasons (seven of soybean and two of corn). The experiment was carried out with a randomized block design with three management zones and five corn seeding rates ranging from 50 000 to 90 000 seeds per ha−1. The soil was a Rhodic Hapludox with a subtropical climate. Optimization of the corn plant population within the field increased grain yield compared to the reference plant population (70 000 plants ha−1). Yield increases in the LZ, due to corn plant population reduction in relation to the target population, were 1.20 and 1.90 Mg ha−1 for first and second experiments, respectively. This resulted in economic gains of 19.8 and 28.7 %, respectively. Yield increases in the HZ were 0.89 and 0.94 Mg ha−1, respectively, and were due to an increase in plant population in relation to the target population. This resulted in economic gains of 5.6 and 6.6 % for the first and second experiments, respectively. In the MZ, the adjustment of the target plant population was not necessary. Optimizing corn population according to management zones is a promising tool for precision agriculture in Southern Brazil. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Optimization of corn plant population according to management zones in Southern Brazil

Loading next page...
 
/lp/springer_journal/optimization-of-corn-plant-population-according-to-management-zones-in-R3MfE7deLi
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-013-9308-7
Publisher site
See Article on Publisher Site

Abstract

Precision agriculture relies on site-specific interventions determined by the spatial variability of factors driving plant growth. The main objective of this study was to assess the efficiency of variable-rate seeding of corn (Zea mays L.) with delineated management zones. This study involved two experiments carried out in Não-Me-Toque, Rio Grande do Sul, Brazil. For the first experiment, carried out in 2009/2010, management zones were delineated by the farmer’s knowledge of the crop field. The field was split into low (LZ), medium (MZ) and high (HZ) crop performance zones. In the second experiment, carried out in 2010/2011, management zones were delineated by overlaying standardized yield data from nine crop seasons (seven of soybean and two of corn). The experiment was carried out with a randomized block design with three management zones and five corn seeding rates ranging from 50 000 to 90 000 seeds per ha−1. The soil was a Rhodic Hapludox with a subtropical climate. Optimization of the corn plant population within the field increased grain yield compared to the reference plant population (70 000 plants ha−1). Yield increases in the LZ, due to corn plant population reduction in relation to the target population, were 1.20 and 1.90 Mg ha−1 for first and second experiments, respectively. This resulted in economic gains of 19.8 and 28.7 %, respectively. Yield increases in the HZ were 0.89 and 0.94 Mg ha−1, respectively, and were due to an increase in plant population in relation to the target population. This resulted in economic gains of 5.6 and 6.6 % for the first and second experiments, respectively. In the MZ, the adjustment of the target plant population was not necessary. Optimizing corn population according to management zones is a promising tool for precision agriculture in Southern Brazil.

Journal

Precision AgricultureSpringer Journals

Published: Feb 10, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off