Optimization and evaluation of shortest path queries

Optimization and evaluation of shortest path queries We investigate the problem of how to evaluate efficiently a collection of shortest path queries on massive graphs that are too big to fit in the main memory. To evaluate a shortest path query efficiently, we introduce two pruning algorithms. These algorithms differ on the extent of materialization of shortest path cost and on how the search space is pruned. By grouping shortest path queries properly, batch processing improves the performance of shortest path query evaluation. Extensive study is also done on fragment sizes, cache sizes and query types that we show that affect the performance of a disk-based shortest path algorithm. The performance and scalability of proposed techniques are evaluated with large road systems in the Eastern United States. To demonstrate that the proposed disk-based algorithms are viable, we show that their search times are significant better than that of main-memory Dijkstra's algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Optimization and evaluation of shortest path queries

Loading next page...
 
/lp/springer_journal/optimization-and-evaluation-of-shortest-path-queries-AR0KVvODqA
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-005-0177-1
Publisher site
See Article on Publisher Site

Abstract

We investigate the problem of how to evaluate efficiently a collection of shortest path queries on massive graphs that are too big to fit in the main memory. To evaluate a shortest path query efficiently, we introduce two pruning algorithms. These algorithms differ on the extent of materialization of shortest path cost and on how the search space is pruned. By grouping shortest path queries properly, batch processing improves the performance of shortest path query evaluation. Extensive study is also done on fragment sizes, cache sizes and query types that we show that affect the performance of a disk-based shortest path algorithm. The performance and scalability of proposed techniques are evaluated with large road systems in the Eastern United States. To demonstrate that the proposed disk-based algorithms are viable, we show that their search times are significant better than that of main-memory Dijkstra's algorithm.

Journal

The VLDB JournalSpringer Journals

Published: Jul 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off