Optimality conditions in optimization problems with convex feasible set using convexificators

Optimality conditions in optimization problems with convex feasible set using convexificators In this paper, we consider a nonsmooth optimization problem with a convex feasible set described by constraint functions which are neither convex nor differentiable nor locally Lipschitz necessarily. Utilizing upper regular convexificators, we characterize the normal cone of the feasible set and derive KKT type necessary and sufficient optimality conditions. Under some assumptions, we show that the set of KKT multipliers is bounded. We also characterize the set of optimal solutions and introduce a linear approximation corresponding to the original problem which is useful in checking optimality. The obtained outcomes extend various results existing in the literature to a more general setting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Methods of Operations Research Springer Journals

Optimality conditions in optimization problems with convex feasible set using convexificators

Loading next page...
 
/lp/springer_journal/optimality-conditions-in-optimization-problems-with-convex-feasible-NAx5QZSqve
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Operations Research/Decision Theory; Business and Management, general
ISSN
1432-2994
eISSN
1432-5217
D.O.I.
10.1007/s00186-017-0584-2
Publisher site
See Article on Publisher Site

Abstract

In this paper, we consider a nonsmooth optimization problem with a convex feasible set described by constraint functions which are neither convex nor differentiable nor locally Lipschitz necessarily. Utilizing upper regular convexificators, we characterize the normal cone of the feasible set and derive KKT type necessary and sufficient optimality conditions. Under some assumptions, we show that the set of KKT multipliers is bounded. We also characterize the set of optimal solutions and introduce a linear approximation corresponding to the original problem which is useful in checking optimality. The obtained outcomes extend various results existing in the literature to a more general setting.

Journal

Mathematical Methods of Operations ResearchSpringer Journals

Published: Apr 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off