Optimality conditions in differentiable vector optimization via second-order tangent sets

Optimality conditions in differentiable vector optimization via second-order tangent sets We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Fréchet differentiable objective function between two normed spaces. We also establish second-order sufficient conditions when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Optimality conditions in differentiable vector optimization via second-order tangent sets

Loading next page...
 
/lp/springer_journal/optimality-conditions-in-differentiable-vector-optimization-via-second-t2QVd5Odjd
Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Mathematics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Methods
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/BF02638148
Publisher site
See Article on Publisher Site

Abstract

We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Fréchet differentiable objective function between two normed spaces. We also establish second-order sufficient conditions when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Apr 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off