Optimal Virtualized Inter-Tenant Resource Sharing for Device-to-Device Communications in 5G Networks

Optimal Virtualized Inter-Tenant Resource Sharing for Device-to-Device Communications in 5G Networks Device-to-Device (D2D) communication is expected to enable a number of new services and applications in future mobile networks and has attracted significant research interest over the last few years. Remarkably, little attention has been placed on the issue of D2D communication for users belonging to different operators. In this paper, we focus on this aspect for D2D users that belong to different tenants (virtual network operators), assuming virtualized and programmable future 5G wireless networks. Under the assumption of a cross-tenant orchestrator, we show that significant gains can be achieved in terms of network performance by optimizing resource sharing from the different tenants, i.e., slices of the substrate physical network topology. To this end, a sum-rate optimization framework is proposed for optimal sharing of the virtualized resources. Via a wide site of numerical investigations, we prove the efficacy of the proposed solution and the achievable gains compared to legacy approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mobile Networks and Applications Springer Journals

Optimal Virtualized Inter-Tenant Resource Sharing for Device-to-Device Communications in 5G Networks

Loading next page...
 
/lp/springer_journal/optimal-virtualized-inter-tenant-resource-sharing-for-device-to-device-EVEEub6JmL
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Communications Engineering, Networks; Computer Communication Networks; Electrical Engineering; IT in Business
ISSN
1383-469X
eISSN
1572-8153
D.O.I.
10.1007/s11036-017-0822-0
Publisher site
See Article on Publisher Site

Abstract

Device-to-Device (D2D) communication is expected to enable a number of new services and applications in future mobile networks and has attracted significant research interest over the last few years. Remarkably, little attention has been placed on the issue of D2D communication for users belonging to different operators. In this paper, we focus on this aspect for D2D users that belong to different tenants (virtual network operators), assuming virtualized and programmable future 5G wireless networks. Under the assumption of a cross-tenant orchestrator, we show that significant gains can be achieved in terms of network performance by optimizing resource sharing from the different tenants, i.e., slices of the substrate physical network topology. To this end, a sum-rate optimization framework is proposed for optimal sharing of the virtualized resources. Via a wide site of numerical investigations, we prove the efficacy of the proposed solution and the achievable gains compared to legacy approaches.

Journal

Mobile Networks and ApplicationsSpringer Journals

Published: Feb 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off