Optimal Portfolio Selection Under Concave Price Impact

Optimal Portfolio Selection Under Concave Price Impact In this paper we study an optimal portfolio selection problem under instantaneous price impact. Based on some empirical analysis in the literature, we model such impact as a concave function of the trading size when the trading size is small. The price impact can be thought of as either a liquidity cost or a transaction cost, but the concavity nature of the cost leads to some fundamental difference from those in the existing literature. We show that the problem can be reduced to an impulse control problem, but without fixed cost, and that the value function is a viscosity solution to a special type of Quasi-Variational Inequality (QVI). We also prove directly (without using the solution to the QVI) that the optimal strategy exists and more importantly, despite the absence of a fixed cost, it is still in a “piecewise constant” form, reflecting a more practical perspective. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Optimal Portfolio Selection Under Concave Price Impact

Loading next page...
 
/lp/springer_journal/optimal-portfolio-selection-under-concave-price-impact-rwOJHeC0mm
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-013-9191-7
Publisher site
See Article on Publisher Site

Abstract

In this paper we study an optimal portfolio selection problem under instantaneous price impact. Based on some empirical analysis in the literature, we model such impact as a concave function of the trading size when the trading size is small. The price impact can be thought of as either a liquidity cost or a transaction cost, but the concavity nature of the cost leads to some fundamental difference from those in the existing literature. We show that the problem can be reduced to an impulse control problem, but without fixed cost, and that the value function is a viscosity solution to a special type of Quasi-Variational Inequality (QVI). We also prove directly (without using the solution to the QVI) that the optimal strategy exists and more importantly, despite the absence of a fixed cost, it is still in a “piecewise constant” form, reflecting a more practical perspective.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Jun 1, 2013

References

  • Hedging and portfolio optimization in financial markets with a large trader
    Bank, P.; Baum, D.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off