Optimal gating system design for investment casting of 17-4PH stainless steel enclosed impeller by numerical simulation and experimental verification

Optimal gating system design for investment casting of 17-4PH stainless steel enclosed impeller... The impellers of centrifugal pumps are highly susceptible to the latent damage of corrosion and cavitation after long periods of transporting chemical fluids. To enhance the structural integrity and effective lifespan of impellers, this study applied mold flow analysis to the design of gating systems for 17-4PH stainless steel enclosed impellers. Our objective was to eliminate shrinkage and porous defects common in investment casting. We adopted various bottom, side, and top pouring systems with different pouring parameters to examine the behavior of the molten metal flow and solidification in the mold cavity. We designed a pressurized gating system with specific gating ratio to achieve a stable flow velocity at in-gates. Physical sensors preset in the interior of the cavity were also used to detect thermodynamic behavior and analyze phase changes during casting simulations. The probability of shrinkage defect formation was assessed using the retained melt modulus (RMM) and the Niyama criterion. Experiments and nondestructive inspections show that optimizing the design of the gating system prevented surface shrinkage and interior defects. The improvements also reduced post-processing time and costs, increased yields, and enhanced casting quality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Optimal gating system design for investment casting of 17-4PH stainless steel enclosed impeller by numerical simulation and experimental verification

Loading next page...
 
/lp/springer_journal/optimal-gating-system-design-for-investment-casting-of-17-4ph-rSGE3jpSsg
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0198-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial