# Optimal Control of Point Processes with Noisy Observations: The Maximum Principle

Optimal Control of Point Processes with Noisy Observations: The Maximum Principle This paper studies the optimal control problem for point processes with Gaussian white-noised observations. A general maximum principle is proved for the partially observed optimal control of point processes, without using the associated filtering equation . Adjoint flows—the adjoint processes of the stochastic flows of the optimal system—are introduced, and their relations are established. Adjoint vector fields , which are observation-predictable, are introduced as the solutions of associated backward stochastic integral-partial differential equtions driven by the observation process. In a heuristic way, their relations are explained, and the adjoint processes are expressed in terms of the adjoint vector fields, their gradients and Hessians, along the optimal state process. In this way the adjoint processes are naturally connected to the adjoint equation of the associated filtering equation . This shows that the conditional expectation in the maximum condition is computable through filtering the optimal state, as usually expected. Some variants of the partially observed stochastic maximum principle are derived, and the corresponding maximum conditions are quite different from the counterpart for the diffusion case. Finally, as an example, a quadratic optimal control problem with a free Poisson process and a Gaussian white-noised observation is explicitly solved using the partially observed maximum principle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

# Optimal Control of Point Processes with Noisy Observations: The Maximum Principle

, Volume 45 (2) – Jan 1, 2002
28 pages

/lp/springer_journal/optimal-control-of-point-processes-with-noisy-observations-the-maximum-wdO5HzE8F9
Publisher
Springer-Verlag
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-001-0031-9
Publisher site
See Article on Publisher Site

### Abstract

This paper studies the optimal control problem for point processes with Gaussian white-noised observations. A general maximum principle is proved for the partially observed optimal control of point processes, without using the associated filtering equation . Adjoint flows—the adjoint processes of the stochastic flows of the optimal system—are introduced, and their relations are established. Adjoint vector fields , which are observation-predictable, are introduced as the solutions of associated backward stochastic integral-partial differential equtions driven by the observation process. In a heuristic way, their relations are explained, and the adjoint processes are expressed in terms of the adjoint vector fields, their gradients and Hessians, along the optimal state process. In this way the adjoint processes are naturally connected to the adjoint equation of the associated filtering equation . This shows that the conditional expectation in the maximum condition is computable through filtering the optimal state, as usually expected. Some variants of the partially observed stochastic maximum principle are derived, and the corresponding maximum conditions are quite different from the counterpart for the diffusion case. Finally, as an example, a quadratic optimal control problem with a free Poisson process and a Gaussian white-noised observation is explicitly solved using the partially observed maximum principle.

### Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Jan 1, 2002

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations