Optimal Control of Multigroup Neutron Fission Systems

Optimal Control of Multigroup Neutron Fission Systems This article considers the optimal control of nuclear fission reactors modeled by parabolic partial differential equations. The neutrons are divided into fast and thermal groups with two equations describing their interaction and fission, while a third equation describes the temperature in the reactor. The coefficient for the fission and absorption of the thermal neutron is assumed to be controlled by a function through the use of control rods in the reactor. The object is to maintain a target neutron flux shape, while a desired power level and adjustment costs are taken into consideration. A nonlinear optimality system of six equations is deduced, characterizing the optimal control. An iterative procedure is shown to contract toward the solution of the optimality system in small time intervals. The theory is extended to include the effect of other fission products, leading to coupled ordinary and partial differential equations. Numerical experiments are also included, suggesting directions for further research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Optimal Control of Multigroup Neutron Fission Systems

Loading next page...
 
/lp/springer_journal/optimal-control-of-multigroup-neutron-fission-systems-OF3otupOzS
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s002459900115
Publisher site
See Article on Publisher Site

Abstract

This article considers the optimal control of nuclear fission reactors modeled by parabolic partial differential equations. The neutrons are divided into fast and thermal groups with two equations describing their interaction and fission, while a third equation describes the temperature in the reactor. The coefficient for the fission and absorption of the thermal neutron is assumed to be controlled by a function through the use of control rods in the reactor. The object is to maintain a target neutron flux shape, while a desired power level and adjustment costs are taken into consideration. A nonlinear optimality system of six equations is deduced, characterizing the optimal control. An iterative procedure is shown to contract toward the solution of the optimality system in small time intervals. The theory is extended to include the effect of other fission products, leading to coupled ordinary and partial differential equations. Numerical experiments are also included, suggesting directions for further research.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Jun 1, 2007

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off