Optimal and efficient generalized twig pattern processing: a combination of preorder and postorder filterings

Optimal and efficient generalized twig pattern processing: a combination of preorder and... Searching for occurrences of a twig pattern query (TPQ) in an XML document is a core task of all XML database query languages. The generalized twig pattern (GTP) extends the TPQ model to include semantics related to output nodes, optional nodes, and boolean expressions which are part of the XQuery language. Preorder filtering holistic algorithms such as TwigStack represent a significant class of TPQ processing approaches with a linear worst-case I/O complexity with respect to the sum of the input and output sizes for some query classes. Another important class of holistic approaches is represented by postorder filtering holistic algorithms such as $$\text{ Twig}^2$$ Stack which introduced a linear output enumeration time with respect to the result size. In this article, we introduce a holistic algorithm called GTPStack which is the first approach capable of processing a GTP with a linear worst-case I/O complexity with respect to the GTP result size. This is achieved by using a combination of the preorder and postorder filterings before storing nodes in an intermediate storage. Additionally, another contribution of this article is an introduction of a new perspective of holistic algorithm optimality. We show that the optimality depends not only on a query class but also on XML document characteristics. This new view on the optimality extends the general knowledge about the type of queries for which the holistic algorithms are optimal. Moreover, it allows us to determine that GTPStack is optimal for any GTP when a specific XML document is considered. We present a comprehensive experimental study of the state-of-the-art holistic algorithms showing under which conditions GTPStack outperforms the other holistic approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Optimal and efficient generalized twig pattern processing: a combination of preorder and postorder filterings

Loading next page...
 
/lp/springer_journal/optimal-and-efficient-generalized-twig-pattern-processing-a-fzliiyR08w
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0295-5
Publisher site
See Article on Publisher Site

Abstract

Searching for occurrences of a twig pattern query (TPQ) in an XML document is a core task of all XML database query languages. The generalized twig pattern (GTP) extends the TPQ model to include semantics related to output nodes, optional nodes, and boolean expressions which are part of the XQuery language. Preorder filtering holistic algorithms such as TwigStack represent a significant class of TPQ processing approaches with a linear worst-case I/O complexity with respect to the sum of the input and output sizes for some query classes. Another important class of holistic approaches is represented by postorder filtering holistic algorithms such as $$\text{ Twig}^2$$ Stack which introduced a linear output enumeration time with respect to the result size. In this article, we introduce a holistic algorithm called GTPStack which is the first approach capable of processing a GTP with a linear worst-case I/O complexity with respect to the GTP result size. This is achieved by using a combination of the preorder and postorder filterings before storing nodes in an intermediate storage. Additionally, another contribution of this article is an introduction of a new perspective of holistic algorithm optimality. We show that the optimality depends not only on a query class but also on XML document characteristics. This new view on the optimality extends the general knowledge about the type of queries for which the holistic algorithms are optimal. Moreover, it allows us to determine that GTPStack is optimal for any GTP when a specific XML document is considered. We present a comprehensive experimental study of the state-of-the-art holistic algorithms showing under which conditions GTPStack outperforms the other holistic approaches.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off