Optically sliced measurement of velocity and pH distribution in microchannel

Optically sliced measurement of velocity and pH distribution in microchannel A simultaneous measurement technique for the velocity and pH distribution was developed by using a confocal microscope and a 3CCD color camera for investigations of a chemical reacting flow field in a microchannel. Micron-resolution particle image velocimetry and laser induced fluorescence were utilized for the velocity and pH measurement, respectively. The present study employed fluorescent particles with 1 μm diameter and Fluorescein sodium salt whose fluorescent intensity increases with an increase in pH value over the range of pH 5.0–9.0. The advantages of the present system are to separate the fluorescence of particles from that of dye by using the 3CCD color camera and to provide the depth resolution of 5.0 μm by the confocal microscope. The measurement uncertainties of the velocity and pH measurements were estimated to be 5.5 μm/s and pH 0.23, respectively. Two aqueous solutions at different pH values were introduced into a T-shaped microchannel. The mixing process in the junction area was investigated by the present technique, and the effect of the chemical reaction on the pH gradient was discussed by a comparison between the proton concentration profiles obtained from the experimental pH distribution and those calculated from the measured velocity data. For the chemical reacting flow with the buffering action, the profiles from the numerical simulation showed smaller gradients compared with those from the experiments, because the production or extinction of protons was yielded by the chemical reaction. Furthermore, the convection of protons was evaluated from the velocity and pH distribution and compared with the diffusion. It is found that the ratio between the diffusion and convection is an important factor to investigate the mixing process in the microfluidic device with chemical reactions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Optically sliced measurement of velocity and pH distribution in microchannel

Loading next page...
 
/lp/springer_journal/optically-sliced-measurement-of-velocity-and-ph-distribution-in-OaO8zg41cd
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0326-y
Publisher site
See Article on Publisher Site

Abstract

A simultaneous measurement technique for the velocity and pH distribution was developed by using a confocal microscope and a 3CCD color camera for investigations of a chemical reacting flow field in a microchannel. Micron-resolution particle image velocimetry and laser induced fluorescence were utilized for the velocity and pH measurement, respectively. The present study employed fluorescent particles with 1 μm diameter and Fluorescein sodium salt whose fluorescent intensity increases with an increase in pH value over the range of pH 5.0–9.0. The advantages of the present system are to separate the fluorescence of particles from that of dye by using the 3CCD color camera and to provide the depth resolution of 5.0 μm by the confocal microscope. The measurement uncertainties of the velocity and pH measurements were estimated to be 5.5 μm/s and pH 0.23, respectively. Two aqueous solutions at different pH values were introduced into a T-shaped microchannel. The mixing process in the junction area was investigated by the present technique, and the effect of the chemical reaction on the pH gradient was discussed by a comparison between the proton concentration profiles obtained from the experimental pH distribution and those calculated from the measured velocity data. For the chemical reacting flow with the buffering action, the profiles from the numerical simulation showed smaller gradients compared with those from the experiments, because the production or extinction of protons was yielded by the chemical reaction. Furthermore, the convection of protons was evaluated from the velocity and pH distribution and compared with the diffusion. It is found that the ratio between the diffusion and convection is an important factor to investigate the mixing process in the microfluidic device with chemical reactions.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 16, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off