Optical wavelength demultiplexer based on photonic crystal ring resonators

Optical wavelength demultiplexer based on photonic crystal ring resonators Improving transmission efficiency, quality factor, channel spacing and crosstalk levels are the top priorities in designing optical demultiplexers, suitable for wavelength division multiplexing applications. In this paper, we proposed a novel structure for designing optical demultiplexer based on photonic crystal ring resonator. For performing wavelength selection task, we used four ring resonators. The resonance wavelength of the ring resonators depends on the dimensions of the ring core; therefore, we chose two different values for the lattice constant of the ring resonators core section. The channel spacing of the structure is about 3 nm, the minimum transmission efficiency is more than 95 %, the overall quality factor is more than 2,600, and finally the crosstalk levels are better than $$-$$ - 19 dB. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Optical wavelength demultiplexer based on photonic crystal ring resonators

Loading next page...
 
/lp/springer_journal/optical-wavelength-demultiplexer-based-on-photonic-crystal-ring-K6h3Dhzf6q
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-014-0483-x
Publisher site
See Article on Publisher Site

Abstract

Improving transmission efficiency, quality factor, channel spacing and crosstalk levels are the top priorities in designing optical demultiplexers, suitable for wavelength division multiplexing applications. In this paper, we proposed a novel structure for designing optical demultiplexer based on photonic crystal ring resonator. For performing wavelength selection task, we used four ring resonators. The resonance wavelength of the ring resonators depends on the dimensions of the ring core; therefore, we chose two different values for the lattice constant of the ring resonators core section. The channel spacing of the structure is about 3 nm, the minimum transmission efficiency is more than 95 %, the overall quality factor is more than 2,600, and finally the crosstalk levels are better than $$-$$ - 19 dB.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Dec 5, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off