Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Optical spectroscopic investigations on silver doped sodium phosphate glass

Optical spectroscopic investigations on silver doped sodium phosphate glass This research investigates the optical spectroscopic characteristics of silver-doped phosphate antibacterial glasses with chemical compositions 42P2O5–42ZnO–(16−x) Na2O, (where x = 0, 0.4, 0.8, 1.2, 1.6 Ag2O). The glass samples were prepared by conventional melting quenching techniques. The structures of all the homogenous prepared glasses were studied by XRD, and UV–Vis spectroscopy. The glass formability was tested and the amorphous nature was approved using XRD-technique. Archimedes method has been employed to measure the density of the samples hence, the molar volume was calculated. The molar volume and density shows discontinuity of measurements under effect of increasing Ag2O concentration. The optical spectroscopic analyses for the obtained glass samples has been investigated over the whole range (190–2500 nm) for studying the effect of bandpass absorption glass filter, its color peak center and UV cut-off. Transmittance of some glass samples showed cut-off for UV and short visible wavelengths in some glass samples, so these samples composition can be considered as long-pass edge filters and from band stop ranges started from 190 to 515 nm and increase by increasing doped silver concentration. The optical energy gap decreases by increasing the Ag2O concentration from 4.43 to 3.61 eV. The refractive index and extinction coefficient and some optical properties are studied and the results indicate clearly that there is no high remarkable change with changing wavelength. The refractive index is found to be increased by increasing the Ag2O content. The wavelength dependence of extinction coefficient and the dielectric constants exhibit higher values for higher Ag2O contents. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optical and Quantum Electronics Springer Journals

Optical spectroscopic investigations on silver doped sodium phosphate glass

Loading next page...
 
/lp/springer_journal/optical-spectroscopic-investigations-on-silver-doped-sodium-phosphate-qkzF0ezGYq

References (37)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Physics; Optics, Lasers, Photonics, Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks
ISSN
0306-8919
eISSN
1572-817X
DOI
10.1007/s11082-017-1132-2
Publisher site
See Article on Publisher Site

Abstract

This research investigates the optical spectroscopic characteristics of silver-doped phosphate antibacterial glasses with chemical compositions 42P2O5–42ZnO–(16−x) Na2O, (where x = 0, 0.4, 0.8, 1.2, 1.6 Ag2O). The glass samples were prepared by conventional melting quenching techniques. The structures of all the homogenous prepared glasses were studied by XRD, and UV–Vis spectroscopy. The glass formability was tested and the amorphous nature was approved using XRD-technique. Archimedes method has been employed to measure the density of the samples hence, the molar volume was calculated. The molar volume and density shows discontinuity of measurements under effect of increasing Ag2O concentration. The optical spectroscopic analyses for the obtained glass samples has been investigated over the whole range (190–2500 nm) for studying the effect of bandpass absorption glass filter, its color peak center and UV cut-off. Transmittance of some glass samples showed cut-off for UV and short visible wavelengths in some glass samples, so these samples composition can be considered as long-pass edge filters and from band stop ranges started from 190 to 515 nm and increase by increasing doped silver concentration. The optical energy gap decreases by increasing the Ag2O concentration from 4.43 to 3.61 eV. The refractive index and extinction coefficient and some optical properties are studied and the results indicate clearly that there is no high remarkable change with changing wavelength. The refractive index is found to be increased by increasing the Ag2O content. The wavelength dependence of extinction coefficient and the dielectric constants exhibit higher values for higher Ag2O contents.

Journal

Optical and Quantum ElectronicsSpringer Journals

Published: Aug 23, 2017

There are no references for this article.