Optical spectroscopic investigations on silver doped sodium phosphate glass

Optical spectroscopic investigations on silver doped sodium phosphate glass This research investigates the optical spectroscopic characteristics of silver-doped phosphate antibacterial glasses with chemical compositions 42P2O5–42ZnO–(16−x) Na2O, (where x = 0, 0.4, 0.8, 1.2, 1.6 Ag2O). The glass samples were prepared by conventional melting quenching techniques. The structures of all the homogenous prepared glasses were studied by XRD, and UV–Vis spectroscopy. The glass formability was tested and the amorphous nature was approved using XRD-technique. Archimedes method has been employed to measure the density of the samples hence, the molar volume was calculated. The molar volume and density shows discontinuity of measurements under effect of increasing Ag2O concentration. The optical spectroscopic analyses for the obtained glass samples has been investigated over the whole range (190–2500 nm) for studying the effect of bandpass absorption glass filter, its color peak center and UV cut-off. Transmittance of some glass samples showed cut-off for UV and short visible wavelengths in some glass samples, so these samples composition can be considered as long-pass edge filters and from band stop ranges started from 190 to 515 nm and increase by increasing doped silver concentration. The optical energy gap decreases by increasing the Ag2O concentration from 4.43 to 3.61 eV. The refractive index and extinction coefficient and some optical properties are studied and the results indicate clearly that there is no high remarkable change with changing wavelength. The refractive index is found to be increased by increasing the Ag2O content. The wavelength dependence of extinction coefficient and the dielectric constants exhibit higher values for higher Ag2O contents. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optical and Quantum Electronics Springer Journals

Optical spectroscopic investigations on silver doped sodium phosphate glass

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Physics; Optics, Lasers, Photonics, Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial