Optical packet switch with energy-efficient hybrid optical/electronic buffering for data center and HPC networks

Optical packet switch with energy-efficient hybrid optical/electronic buffering for data center... Advanced optical switching architectures, capable of scaling to thousands of ports while achieving low communication latency and reduced power consumption, are becoming a dominant theme for interconnection networks in next-generation data centers and high-performance computing systems. The arrayed waveguide grating (AWG) device, with its inherent ability to perform wavelength routing of many wavelengths in parallel, has been recognized as a promising core component for fast optical switching. Although the AWG is energy efficient (as essentially a passive optical device), has high-bandwidth switching capabilities and has relative simplicity and low cost, an inherent characteristic of switching schemes based on the AWG is potential wavelength oversubscription at switch output ports, which can lead to high packet blocking probabilities. To resolve this traffic congestion, this paper proposes a hybrid optical/electronic buffering scheme and a method for efficiently integrating fiber delay line buffer capacity into the AWG wavelength assignment scheme. The dimensioning of the optical and electronic buffer resources is then carried out using simulations. The results indicate that with the proper dimensioning, the hybrid-buffered AWG switch achieves significantly increased overall energy efficiency, compared to electronic-only buffering, while maintaining low latency and non-blocking performance. We also investigate the computational complexity of the required scheduling algorithm in the hybrid-buffered switch, which in turn allows us to estimate the required processing power of the switch controller. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Optical packet switch with energy-efficient hybrid optical/electronic buffering for data center and HPC networks

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial