Optical measurement uncertainties due to refractive index mismatch for flow in porous media

Optical measurement uncertainties due to refractive index mismatch for flow in porous media Application of optical techniques such as PIV, PTV, and LDA for velocity field estimation in porous media requires matching of refractive indices of the liquid phase to that of the solid matrix, including the channel walls. The methods most commonly employed to match the refractive indices have been to maximize the transmitted intensity through the bed or to rely on direct refractometer measurements of the indices of the two phases. Mismatch of refractive indices leads to error in estimation of particle position, ε PD, due to refraction at solid–liquid interfaces. Analytical ray tracing applied to a model of solid beads placed randomly along the optical path is used to estimate ε PD. The model, after validating against experimental results, is used to generate expression for ε PD as a function of refractive index mismatch for a range of bead diameters, bed widths, bed porosity, and optical magnification. The estimate of ε PD, which is found to be unbiased, is connected to errors in PIV measurement using the central limit theorem. Mismatch in refractive indices can also lead to reduction in particle density, N s, detected light flux, J, and degrade the particle image. The model, verified through experiments, is used to predict the reduction in N s and J, where it is found that particle defocusing caused by spherical beads in refractive index mismatched porous bed is the primary contributor to reductions of N s and J. In addition, the magnitude of ε PD is determined for the use of fluorescent dye emission for particle detection due to wavelength-dependent index of refraction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Optical measurement uncertainties due to refractive index mismatch for flow in porous media

Loading next page...
 
/lp/springer_journal/optical-measurement-uncertainties-due-to-refractive-index-mismatch-for-woKSpaCpYK
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1369-2
Publisher site
See Article on Publisher Site

Abstract

Application of optical techniques such as PIV, PTV, and LDA for velocity field estimation in porous media requires matching of refractive indices of the liquid phase to that of the solid matrix, including the channel walls. The methods most commonly employed to match the refractive indices have been to maximize the transmitted intensity through the bed or to rely on direct refractometer measurements of the indices of the two phases. Mismatch of refractive indices leads to error in estimation of particle position, ε PD, due to refraction at solid–liquid interfaces. Analytical ray tracing applied to a model of solid beads placed randomly along the optical path is used to estimate ε PD. The model, after validating against experimental results, is used to generate expression for ε PD as a function of refractive index mismatch for a range of bead diameters, bed widths, bed porosity, and optical magnification. The estimate of ε PD, which is found to be unbiased, is connected to errors in PIV measurement using the central limit theorem. Mismatch in refractive indices can also lead to reduction in particle density, N s, detected light flux, J, and degrade the particle image. The model, verified through experiments, is used to predict the reduction in N s and J, where it is found that particle defocusing caused by spherical beads in refractive index mismatched porous bed is the primary contributor to reductions of N s and J. In addition, the magnitude of ε PD is determined for the use of fluorescent dye emission for particle detection due to wavelength-dependent index of refraction.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 2, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off