Optical, magnetic, and photoelectrochemical properties of electrochemically deposited Eu3+-doped ZnSe thin films

Optical, magnetic, and photoelectrochemical properties of electrochemically deposited Eu3+-doped... The various mole percent (1–5%) of Eu3+-doped ZnSe thin films were fabricated on the indium-doped tin oxide (ITO) conducting glass substrate by single-step electrochemical deposition (ECD) process in an aqueous medium at 50 °C. The structural, optical, magnetic, and electrochemical properties were characterized as a function of the Eu3+ ion concentration. The X-ray diffraction (XRD) analyses evidenced that the films were hexagonal wurtzite structure along with the (101) preferential orientation. High-resolution scanning electron microscopy (HRSEM) results revealed that the thin films show a spherical like structure for 1–3% of Eu3+-doped ZnSe films. Further, increasing of Eu3+ concentration (4 and 5%), the surface morphology of thin films was observed as agglomerated grain-like structure. The band gap energy of Eu3+-doped ZnSe thin films (2.35 to 2.49 eV) determined by UV-Vis spectra showed a blue shift of absorption edge compared to the pure ZnSe thin film (2.33 eV). The increased band gap by doping of Eu3+ is due to the quantum size effect. The PL emission intensity enhanced by increasing Eu3+ concentration which revealed the enhanced radiative recombination in the luminescence process. The magnetic study revealed that Eu3+-doped ZnSe thin films were ferromagnetic in nature. Electrochemical impedance analysis indicated that 4% of Eu3+-doped ZnSe thin films showed a lower charge transfer resistance (352 Ω) and excellent properties compared to the other samples. Further, the photoelectrochemical measurements carried out for the optimized 4% Eu3+-doped ZnSe thin film revealed the faster migration of photoinduced charge carriers. The present investigation demonstrates that the electrochemically deposited Eu3+-doped ZnSe thin film is a promising candidate for electrochemical device applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Optical, magnetic, and photoelectrochemical properties of electrochemically deposited Eu3+-doped ZnSe thin films

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial