Opposition-based particle swarm optimization with adaptive mutation strategy

Opposition-based particle swarm optimization with adaptive mutation strategy To solve the problem of premature convergence in traditional particle swarm optimization (PSO), an opposition-based particle swarm optimization with adaptive mutation strategy (AMOPSO) is proposed in this paper. In all the variants of PSO, the generalized opposition-based PSO (GOPSO), which introduces the generalized opposition-based learning (GOBL), is a prominent one. However, GOPSO may increase probability of being trapped into local optimum. Thus we introduce two complementary strategies to improve the performance of GOPSO: (1) a kind of adaptive mutation selection strategy (AMS) is used to strengthen its exploratory ability, and (2) an adaptive nonlinear inertia weight (ANIW) is introduced to enhance its exploitative ability. The rational principles are as follows: (1) AMS aims to perform local search around the global optimal particle in current population by adaptive disturbed mutation, so it can be beneficial to improve its exploratory ability and accelerate its convergence speed; (2) because it makes the PSO become rigid to keep fixed constant for the inertia weight, ANIW is used to adaptively tune the inertia weight to balance the contradiction between exploration and exploitation during its iteration process. Compared with several opposition-based PSOs on 14 benchmark functions, the experimental results show that the performance of the proposed AMOPSO algorithm is better or competitive to compared algorithms referred in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

Opposition-based particle swarm optimization with adaptive mutation strategy

Loading next page...
 
/lp/springer_journal/opposition-based-particle-swarm-optimization-with-adaptive-mutation-dtb0zH6M00
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-016-2102-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial