Opposition-based particle swarm optimization with adaptive mutation strategy

Opposition-based particle swarm optimization with adaptive mutation strategy To solve the problem of premature convergence in traditional particle swarm optimization (PSO), an opposition-based particle swarm optimization with adaptive mutation strategy (AMOPSO) is proposed in this paper. In all the variants of PSO, the generalized opposition-based PSO (GOPSO), which introduces the generalized opposition-based learning (GOBL), is a prominent one. However, GOPSO may increase probability of being trapped into local optimum. Thus we introduce two complementary strategies to improve the performance of GOPSO: (1) a kind of adaptive mutation selection strategy (AMS) is used to strengthen its exploratory ability, and (2) an adaptive nonlinear inertia weight (ANIW) is introduced to enhance its exploitative ability. The rational principles are as follows: (1) AMS aims to perform local search around the global optimal particle in current population by adaptive disturbed mutation, so it can be beneficial to improve its exploratory ability and accelerate its convergence speed; (2) because it makes the PSO become rigid to keep fixed constant for the inertia weight, ANIW is used to adaptively tune the inertia weight to balance the contradiction between exploration and exploitation during its iteration process. Compared with several opposition-based PSOs on 14 benchmark functions, the experimental results show that the performance of the proposed AMOPSO algorithm is better or competitive to compared algorithms referred in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

Opposition-based particle swarm optimization with adaptive mutation strategy

Loading next page...
 
/lp/springer_journal/opposition-based-particle-swarm-optimization-with-adaptive-mutation-dtb0zH6M00
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-016-2102-5
Publisher site
See Article on Publisher Site

Abstract

To solve the problem of premature convergence in traditional particle swarm optimization (PSO), an opposition-based particle swarm optimization with adaptive mutation strategy (AMOPSO) is proposed in this paper. In all the variants of PSO, the generalized opposition-based PSO (GOPSO), which introduces the generalized opposition-based learning (GOBL), is a prominent one. However, GOPSO may increase probability of being trapped into local optimum. Thus we introduce two complementary strategies to improve the performance of GOPSO: (1) a kind of adaptive mutation selection strategy (AMS) is used to strengthen its exploratory ability, and (2) an adaptive nonlinear inertia weight (ANIW) is introduced to enhance its exploitative ability. The rational principles are as follows: (1) AMS aims to perform local search around the global optimal particle in current population by adaptive disturbed mutation, so it can be beneficial to improve its exploratory ability and accelerate its convergence speed; (2) because it makes the PSO become rigid to keep fixed constant for the inertia weight, ANIW is used to adaptively tune the inertia weight to balance the contradiction between exploration and exploitation during its iteration process. Compared with several opposition-based PSOs on 14 benchmark functions, the experimental results show that the performance of the proposed AMOPSO algorithm is better or competitive to compared algorithms referred in this paper.

Journal

Soft ComputingSpringer Journals

Published: Mar 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off