Opportunities to improve the seasonal dynamics of water use in lentil (Lens culinaris Medik.) to enhance yield increase in water-limited environments

Opportunities to improve the seasonal dynamics of water use in lentil (Lens culinaris Medik.) to... Lentil (Lens culinaris Medikus) is one of the most important annual food legumes that plays an important role in the food and nutritional security of millions in the world. Lentil is mainly grown under rainfed environments, where drought is one of the most challenging abiotic stresses that negatively impacts lentil production in the arid and semi-arid areas. Therefore, development of drought-adapted cultivars is one of the major objectives of national and international lentil breeding programs. The goal of this review is to provide a report on the current status of traits of lentil that might result in yield increases in water-limited environments and identify opportunities for research on other traits. Lately, traits that are either related to developmental plasticity and/or altered rooting and shoot characteristics have received considerable attention in the efforts to increase lentil yield in water-limited environments. However, two traits that have recently been proven to be especially useful in other legumes are still missing in lentil drought research: early partial stomatal closure under soil drying, and limited-transpiration under high atmospheric vapor pressure deficit. This review provides suggestions for further exploitation of these two soil–water-conservation traits in lentil.[Figure not available: see fulltext.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemical and Biological Technologies in Agriculture Springer Journals

Opportunities to improve the seasonal dynamics of water use in lentil (Lens culinaris Medik.) to enhance yield increase in water-limited environments

Loading next page...
 
/lp/springer_journal/opportunities-to-improve-the-seasonal-dynamics-of-water-use-in-lentil-LAH0DjSeij
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Life Sciences; Agriculture; Organic Chemistry; Plant Biochemistry; Soil Science & Conservation; Plant Physiology
eISSN
2196-5641
D.O.I.
10.1186/s40538-017-0103-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial