Online transfer learning by leveraging multiple source domains

Online transfer learning by leveraging multiple source domains Transfer learning aims to enhance performance in a target domain by exploiting useful information from auxiliary or source domains when the labeled data in the target domain are insufficient or difficult to acquire. In some real-world applications, the data of source domain are provided in advance, but the data of target domain may arrive in a stream fashion. This kind of problem is known as online transfer learning. In practice, there can be several source domains that are related to the target domain. The performance of online transfer learning is highly associated with selected source domains, and simply combining the source domains may lead to unsatisfactory performance. In this paper, we seek to promote classification performance in a target domain by leveraging labeled data from multiple source domains in online setting. To achieve this, we propose a new online transfer learning algorithm that merges and leverages the classifiers of the source and target domain with an ensemble method. The mistake bound of the proposed algorithm is analyzed, and the comprehensive experiments on three real-world data sets illustrate that our algorithm outperforms the compared baseline algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Knowledge and Information Systems Springer Journals

Online transfer learning by leveraging multiple source domains

Loading next page...
 
/lp/springer_journal/online-transfer-learning-by-leveraging-multiple-source-domains-q6D9bXJaze
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Computer Science; Information Systems and Communication Service; IT in Business
ISSN
0219-1377
eISSN
0219-3116
D.O.I.
10.1007/s10115-016-1021-1
Publisher site
See Article on Publisher Site

Abstract

Transfer learning aims to enhance performance in a target domain by exploiting useful information from auxiliary or source domains when the labeled data in the target domain are insufficient or difficult to acquire. In some real-world applications, the data of source domain are provided in advance, but the data of target domain may arrive in a stream fashion. This kind of problem is known as online transfer learning. In practice, there can be several source domains that are related to the target domain. The performance of online transfer learning is highly associated with selected source domains, and simply combining the source domains may lead to unsatisfactory performance. In this paper, we seek to promote classification performance in a target domain by leveraging labeled data from multiple source domains in online setting. To achieve this, we propose a new online transfer learning algorithm that merges and leverages the classifiers of the source and target domain with an ensemble method. The mistake bound of the proposed algorithm is analyzed, and the comprehensive experiments on three real-world data sets illustrate that our algorithm outperforms the compared baseline algorithms.

Journal

Knowledge and Information SystemsSpringer Journals

Published: Jan 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off