Online pairing of VoIP conversations

Online pairing of VoIP conversations This paper answers the following question; given a multiplicity of evolving 1-way conversations, can a machine or an algorithm discern the conversational pairs in an online fashion, without understanding the content of the communications? Our analysis indicates that this is possible, and can be achieved just by exploiting the temporal dynamics inherent in a conversation. We also show that our findings are applicable for anonymous and encrypted conversations over VoIP networks. We achieve this by exploiting the aperiodic inter-departure time of VoIP packets, hence trivializing each VoIP stream into a binary time-series, indicating the voice activity of each stream. We propose effective techniques that progressively pair conversing parties with high accuracy and in a limited amount of time. Our findings are verified empirically on a dataset consisting of 1,000 conversations. We obtain very high pairing accuracy that reaches 97% after 5 min of voice conversations. Using a modeling approach we also demonstrate analytically that our result can be extended over an unlimited number of conversations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Online pairing of VoIP conversations

Loading next page...
 
/lp/springer_journal/online-pairing-of-voip-conversations-j2fvSSEBRR
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0087-5
Publisher site
See Article on Publisher Site

Abstract

This paper answers the following question; given a multiplicity of evolving 1-way conversations, can a machine or an algorithm discern the conversational pairs in an online fashion, without understanding the content of the communications? Our analysis indicates that this is possible, and can be achieved just by exploiting the temporal dynamics inherent in a conversation. We also show that our findings are applicable for anonymous and encrypted conversations over VoIP networks. We achieve this by exploiting the aperiodic inter-departure time of VoIP packets, hence trivializing each VoIP stream into a binary time-series, indicating the voice activity of each stream. We propose effective techniques that progressively pair conversing parties with high accuracy and in a limited amount of time. Our findings are verified empirically on a dataset consisting of 1,000 conversations. We obtain very high pairing accuracy that reaches 97% after 5 min of voice conversations. Using a modeling approach we also demonstrate analytically that our result can be extended over an unlimited number of conversations.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2009

References

  • A simplest systematics for the organization of turn-taking in conversation
    Sacks, H.; Schegloff, E.; Jefferson, G.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off