Online multicasting in WDM networks with shared light splitter bank

Online multicasting in WDM networks with shared light splitter bank We study online multicasting in WDM networks with shared light splitter bank. Our objective is either to maximize the network throughput or to minimize the blocking probability. Due to the nature of dynamic requesting for network resources by online multicast requests, the network usually is unable to allocate the resources needed for each request in advance. Instead, it either accepts the request by building an economic multicast tree for the request, in terms of the utilization of the network resources if it has sufficient resources available, or rejects the request, otherwise. It is desirable that the cost of realizing each multicast request be minimized, and the network throughput will be maximized ultimately through the cost saving on each individual request. Since optical light splitting and wavelength conversion switching in optical networks is cost expensive and its fabrication is difficult, it is assumed that only a limited number of light splitters and wavelength converters are installed at a node, which will be shared by all the incoming signals at the node. In addition, it is further assumed that only a fraction of nodes in the network are installed with such optical switches. In this article we first propose a cost model for realizing an online multicast request under such network environments with limited light splitters and wavelength converters, which models the cost of utilization of network resources, particularly in modeling the light splitting and wavelength conversion ability at nodes. We then show that finding a cost-optimal multicast tree for a multicast request under the proposed cost model is NP-complete, and instead devise approximation and heuristic algorithms for it. We finally conduct experiments to evaluate the performance of the proposed algorithms. The results show that the proposed algorithms are efficient and effective in terms of network throughput. Photonic Network Communications Springer Journals

Online multicasting in WDM networks with shared light splitter bank

Loading next page...
Springer US
Copyright © 2008 by Springer Science+Business Media, LLC
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial