One sided indeterminism alone is not a useful resource to simulate any nonlocal correlation

One sided indeterminism alone is not a useful resource to simulate any nonlocal correlation Determinism, no signaling and measurement independence are some of the constraints required for framing Bell inequality. Any model simulating nonlocal correlations must either individually or jointly give up these constraints. Recently Hall (Phys Review A, 84:022102, 2011) derived different forms of Bell inequalities under the assumption of individual or joint relaxation of those constraints on both (i.e., two) the sides of a bipartite system. In this work, we have investigated whether one sided relaxation can also be a useful resource for simulating nonlocal correlations or not. We have derived Bell-type inequalities under the assumption of joint relaxation of these constraints only by one party of a bipartite system. Interestingly, we found that any amount of randomness in correlations of one party in absence of signaling between two parties is incapable of showing any sort of Bell–CHSH violation, whereas signaling and measurement dependence individually can simulate any nonlocal correlations. We have also completed the proof of a recent conjecture due to Hall (Phys. Rev. A 82:062117, 2010; Phys. Rev. A 84:022102, 2011) for one-sided relaxation scenario only. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

One sided indeterminism alone is not a useful resource to simulate any nonlocal correlation

Loading next page...
 
/lp/springer_journal/one-sided-indeterminism-alone-is-not-a-useful-resource-to-simulate-any-1ZFmNgkGHA
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0761-7
Publisher site
See Article on Publisher Site

Abstract

Determinism, no signaling and measurement independence are some of the constraints required for framing Bell inequality. Any model simulating nonlocal correlations must either individually or jointly give up these constraints. Recently Hall (Phys Review A, 84:022102, 2011) derived different forms of Bell inequalities under the assumption of individual or joint relaxation of those constraints on both (i.e., two) the sides of a bipartite system. In this work, we have investigated whether one sided relaxation can also be a useful resource for simulating nonlocal correlations or not. We have derived Bell-type inequalities under the assumption of joint relaxation of these constraints only by one party of a bipartite system. Interestingly, we found that any amount of randomness in correlations of one party in absence of signaling between two parties is incapable of showing any sort of Bell–CHSH violation, whereas signaling and measurement dependence individually can simulate any nonlocal correlations. We have also completed the proof of a recent conjecture due to Hall (Phys. Rev. A 82:062117, 2010; Phys. Rev. A 84:022102, 2011) for one-sided relaxation scenario only.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 27, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off