One-dimensional quantum walks subject to next-nearest-neighbour hopping decoherence

One-dimensional quantum walks subject to next-nearest-neighbour hopping decoherence It is believed that the decoherence will lead to a crossover from quantum to classical for the diffusive behaviour of discrete quantum walk in the long time limit. However, a few systems with sub-ballistic diffusive behaviours have been found in some non-unitary quantum walks. In this paper, we study the one-dimensional discrete quantum walks subject to a short-range hopping decoherence, i.e. with a probability the walker could hop to next-nearest-neighbour lattices unilaterally and/or bilaterally in one time step. We find that, when the decoherence effects only come from the bilateral hopping operation, the diffusive behaviours of quantum walks are sub-ballistic and the distributions of position exhibit three peaks. These results are quite different from those of the previous non-unitary quantum walks. Our results could be used to improve the algorithmic properties of quantum walk due to its faster diffusive speed and more uniform spreading. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

One-dimensional quantum walks subject to next-nearest-neighbour hopping decoherence

Loading next page...
 
/lp/springer_journal/one-dimensional-quantum-walks-subject-to-next-nearest-neighbour-BHQg11W7gI
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1012-2
Publisher site
See Article on Publisher Site

Abstract

It is believed that the decoherence will lead to a crossover from quantum to classical for the diffusive behaviour of discrete quantum walk in the long time limit. However, a few systems with sub-ballistic diffusive behaviours have been found in some non-unitary quantum walks. In this paper, we study the one-dimensional discrete quantum walks subject to a short-range hopping decoherence, i.e. with a probability the walker could hop to next-nearest-neighbour lattices unilaterally and/or bilaterally in one time step. We find that, when the decoherence effects only come from the bilateral hopping operation, the diffusive behaviours of quantum walks are sub-ballistic and the distributions of position exhibit three peaks. These results are quite different from those of the previous non-unitary quantum walks. Our results could be used to improve the algorithmic properties of quantum walk due to its faster diffusive speed and more uniform spreading.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 9, 2015

References

  • Spatial search by quantum walk
    Childs, AM; Goldstone, J
  • Quantum search algorithms
    Ambainis, A
  • Quantum walks: a comprehensive review
    Venegas-Andraca, SE

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off