One-dimensional nonstationary model of vertical exchange in the Black Sea with regard for the mechanism of winter convection in the surface layer

One-dimensional nonstationary model of vertical exchange in the Black Sea with regard for the... We construct a one-dimensional nonstationary isopycnic model of vertical exchange in the Black Sea with regard for the processes of draining and transformation of waters of the Sea of Marmara (or “plume”), vertical diffusion, and the action of winter convection in the upper layer. It is assumed that mixing in the basin is local in space and time and that the winter wind action remains constant from year to year in the analyzed version of the model. The temperature of the upper mixed layer introduced to simulate the winter conditions is regarded as the principal external variable factor. Within the framework of the accepted restrictions, the model enables us to study the annual and interannual variability of the thermohaline characteristics and hydrochemical parameters in the water column of the sea. As an example, we perform the numerical analysis of the periodic action of external thermal conditions on the characteristics of the system with a period of six years. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

One-dimensional nonstationary model of vertical exchange in the Black Sea with regard for the mechanism of winter convection in the surface layer

Loading next page...
 
/lp/springer_journal/one-dimensional-nonstationary-model-of-vertical-exchange-in-the-black-uQqSaWfKG0
Publisher
Kluwer Academic Publishers-Consultants Bureau
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-006-0030-0
Publisher site
See Article on Publisher Site

Abstract

We construct a one-dimensional nonstationary isopycnic model of vertical exchange in the Black Sea with regard for the processes of draining and transformation of waters of the Sea of Marmara (or “plume”), vertical diffusion, and the action of winter convection in the upper layer. It is assumed that mixing in the basin is local in space and time and that the winter wind action remains constant from year to year in the analyzed version of the model. The temperature of the upper mixed layer introduced to simulate the winter conditions is regarded as the principal external variable factor. Within the framework of the accepted restrictions, the model enables us to study the annual and interannual variability of the thermohaline characteristics and hydrochemical parameters in the water column of the sea. As an example, we perform the numerical analysis of the periodic action of external thermal conditions on the characteristics of the system with a period of six years.

Journal

Physical OceanographySpringer Journals

Published: Feb 8, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off