Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice

Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for... The present study demonstrates that a clonal derivative (HF10) of HSV-1 strain HF effectively treated disseminated peritoneal neoplasm in an immunocompetent animal model and that all of survived mice acquired resistance to rechallenge with tumor cells. The survival time of mice treated with HF10 was longer than that of mice treated with hrR3, indicating that the oncolytic effect of HF10 was more potent than that of hrR3 in this animal model. HF10 induces syncytia formation in vitro, whereas hrR3 forms rounded CPE. The sequential administration of HF10 gave a long term survival of more than 90 days after tumor injection, with no signs of disease, in 8 of the 9 treated mice. The results suggest that treatment of disseminated peritoneal tumor with HF10 induces a specific antitumor immune response. Genomic structure determination showed that HF10 has a deletion of 3.9-kilobase pair (kbp) in the right end of UL and UL/IRL junction, resulting in the loss of UL 56 expression. A 2.3 kbp deletion and extensive rearrangement were also observed in the left end of the genome. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice

Loading next page...
 
/lp/springer_journal/oncolytic-viral-therapy-using-a-spontaneously-generated-herpes-simplex-V06330eEQB
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-002-0944-x
Publisher site
See Article on Publisher Site

Abstract

The present study demonstrates that a clonal derivative (HF10) of HSV-1 strain HF effectively treated disseminated peritoneal neoplasm in an immunocompetent animal model and that all of survived mice acquired resistance to rechallenge with tumor cells. The survival time of mice treated with HF10 was longer than that of mice treated with hrR3, indicating that the oncolytic effect of HF10 was more potent than that of hrR3 in this animal model. HF10 induces syncytia formation in vitro, whereas hrR3 forms rounded CPE. The sequential administration of HF10 gave a long term survival of more than 90 days after tumor injection, with no signs of disease, in 8 of the 9 treated mice. The results suggest that treatment of disseminated peritoneal tumor with HF10 induces a specific antitumor immune response. Genomic structure determination showed that HF10 has a deletion of 3.9-kilobase pair (kbp) in the right end of UL and UL/IRL junction, resulting in the loss of UL 56 expression. A 2.3 kbp deletion and extensive rearrangement were also observed in the left end of the genome.

Journal

Archives of VirologySpringer Journals

Published: Mar 1, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off