On velocity gradients in PIV interrogation

On velocity gradients in PIV interrogation This paper presents a generalization of the description of the displacement-correlation peak in particle image velocimetry (PIV) to include the effects due to local velocity gradients at the scale of the interrogation domain. A general expression is derived that describes the amplitude, location and width of the displacement-correlation peak in the presence of local velocity gradients. Simplified expressions are obtained for the peak centroid and peak width for simple non-uniform motions. The results confirm that local gradients can be ignored provided that the variation of the displacement within the interrogation domain does not exceed the (mean) particle-image diameter. An additional bias occurs for a spatially accelerating or decelerating fluid, which implies an artificial "particle inertia" even when the particles can be considered as ideal tracers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On velocity gradients in PIV interrogation

Loading next page...
 
/lp/springer_journal/on-velocity-gradients-in-piv-interrogation-7r8JsZdpC6
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by The Author(s)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0439-3
Publisher site
See Article on Publisher Site

Abstract

This paper presents a generalization of the description of the displacement-correlation peak in particle image velocimetry (PIV) to include the effects due to local velocity gradients at the scale of the interrogation domain. A general expression is derived that describes the amplitude, location and width of the displacement-correlation peak in the presence of local velocity gradients. Simplified expressions are obtained for the peak centroid and peak width for simple non-uniform motions. The results confirm that local gradients can be ignored provided that the variation of the displacement within the interrogation domain does not exceed the (mean) particle-image diameter. An additional bias occurs for a spatially accelerating or decelerating fluid, which implies an artificial "particle inertia" even when the particles can be considered as ideal tracers.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 29, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off