On variational inequalities over polyhedral sets

On variational inequalities over polyhedral sets The results on regularity behavior of solutions to variational inequalities over polyhedral sets proved in a series of papers by Robinson, Ralph and Dontchev-Rockafellar in the 90s has long become classics of variational analysis. But the available proofs are very complicated and practically do not use techniques of variational analysis. The only exception is the proof by Dontchev and Rockafellar of their “critical face” regularity criterion. In the paper we offer a different approach completely based on polyhedral geometry and a few basic principles of metric regularity theory. It leads to new proofs, that look simpler and shorter, and in addition gives some clarifying geometrical information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Programming Springer Journals

On variational inequalities over polyhedral sets

Loading next page...
 
/lp/springer_journal/on-variational-inequalities-over-polyhedral-sets-Y1jsXlD5Cg
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Mathematics of Computing; Numerical Analysis; Combinatorics; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics
ISSN
0025-5610
eISSN
1436-4646
D.O.I.
10.1007/s10107-016-1077-4
Publisher site
See Article on Publisher Site

Abstract

The results on regularity behavior of solutions to variational inequalities over polyhedral sets proved in a series of papers by Robinson, Ralph and Dontchev-Rockafellar in the 90s has long become classics of variational analysis. But the available proofs are very complicated and practically do not use techniques of variational analysis. The only exception is the proof by Dontchev and Rockafellar of their “critical face” regularity criterion. In the paper we offer a different approach completely based on polyhedral geometry and a few basic principles of metric regularity theory. It leads to new proofs, that look simpler and shorter, and in addition gives some clarifying geometrical information.

Journal

Mathematical ProgrammingSpringer Journals

Published: Oct 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off